40 research outputs found

    Stochastic Species Turnover and Stable Coexistence in a Species-Rich, Fire-Prone Plant Community

    Get PDF
    Understanding the mechanisms that maintain diversity is important for managing ecosystems for species persistence. Here we used a long-term data set to understand mechanisms of coexistence at the local and regional scales in the Cape Floristic Region, a global hotspot of plant diversity. We used a dataset comprising 81 monitoring sites, sampled in 1966 and again in 1996, and containing 422 species for which growth form, regeneration mode, dispersal distance and abundances at both the local (site) and meta-community scales are known. We found that species presence and abundance were stable at the meta-community scale over the 30 year period but highly unstable at the local scale, and were not influenced by species' biological attributes. Moreover, rare species were no more likely to go extinct at the local scale than common species, and that alpha diversity in local communities was strongly influenced by habitat. We conclude that stochastic environmental fluctuations associated with recurrent fire buffer populations from extinction, thereby ensuring stable coexistence at the meta-community scale by creating a “neutral-like” pattern maintained by niche-differentiation

    Valuing Insect Pollination Services with Cost of Replacement

    Get PDF
    Value estimates of ecosystem goods and services are useful to justify the allocation of resources towards conservation, but inconclusive estimates risk unsustainable resource allocations. Here we present replacement costs as a more accurate value estimate of insect pollination as an ecosystem service, although this method could also be applied to other services. The importance of insect pollination to agriculture is unequivocal. However, whether this service is largely provided by wild pollinators (genuine ecosystem service) or managed pollinators (commercial service), and which of these requires immediate action amidst reports of pollinator decline, remains contested. If crop pollination is used to argue for biodiversity conservation, clear distinction should be made between values of managed- and wild pollination services. Current methods either under-estimate or over-estimate the pollination service value, and make use of criticised general insect and managed pollinator dependence factors. We apply the theoretical concept of ascribing a value to a service by calculating the cost to replace it, as a novel way of valuing wild and managed pollination services. Adjusted insect and managed pollinator dependence factors were used to estimate the cost of replacing insect- and managed pollination services for the Western Cape deciduous fruit industry of South Africa. Using pollen dusting and hand pollination as suitable replacements, we value pollination services significantly higher than current market prices for commercial pollination, although lower than traditional proportional estimates. The complexity associated with inclusive value estimation of pollination services required several defendable assumptions, but made estimates more inclusive than previous attempts. Consequently this study provides the basis for continued improvement in context specific pollination service value estimates

    Leaky doors: private captivity as a prominent source of bird introductions in Australia

    Get PDF
    The international pet trade is a major source of emerging invasive vertebrate species. We used online resources as a novel source of information for accidental bird escapes, and we investigated the factors that influence the frequency and distribution of bird escapes at a continental scale. We collected information on over 5,000 pet birds reported to be missing on animal websites during the last 15 years in Australia. We investigated whether variables linked to pet ownership successfully predicted bird escapes, and we assessed the potential distribution of these escapes. Most of the reported birds were parrots (> 90%), thus, we analysed factors associated with the frequency of parrot escapes. We found that bird escapes in Australia are much more frequent than previously acknowledged. Bird escapes were reported more frequently within, or around, large Australian capital cities. Socio-economic factors, such as the average personal income level of the community, and the level of human modification to the environment were the best predictors of bird escapes. Cheaper parrot species, Australian natives, and parrot species regarded as peaceful or playful were the most frequently reported escapees. Accidental introductions have been overlooked as an important source of animal incursions. Information on bird escapes is available online in many higher income countries and, in Australia, this is particularly apparent for parrot species. We believe that online resources may provide useful tools for passive surveillance for non-native pet species. Online surveillance will be particularly relevant for species that are highly reported, such as parrots, and species that are either valuable or highly commensal.Miquel Vall-llosera, Phillip Casse

    Africa and the global carbon cycle

    Get PDF
    The African continent has a large and growing role in the global carbon cycle, with potentially important climate change implications. However, the sparse observation network in and around the African continent means that Africa is one of the weakest links in our understanding of the global carbon cycle. Here, we combine data from regional and global inventories as well as forward and inverse model analyses to appraise what is known about Africa's continental-scale carbon dynamics. With low fossil emissions and productivity that largely compensates respiration, land conversion is Africa's primary net carbon release, much of it through burning of forests. Savanna fire emissions, though large, represent a short-term source that is offset by ensuing regrowth. While current data suggest a near zero decadal-scale carbon balance, interannual climate fluctuations (especially drought) induce sizeable variability in net ecosystem productivity and savanna fire emissions such that Africa is a major source of interannual variability in global atmospheric CO(2). Considering the continent's sizeable carbon stocks, their seemingly high vulnerability to anticipated climate and land use change, as well as growing populations and industrialization, Africa's carbon emissions and their interannual variability are likely to undergo substantial increases through the 21st century

    Adaptive Management of Rangeland Systems

    Get PDF
    Adaptive management is an approach to natural resource management that uses structured learning to reduce uncertainties for the improvement of management over time. The origins of adaptive management are linked to ideas of resilience theory and complex systems. Rangeland management is particularly well suited for the application of adaptive management, having sufficient controllability and reducible uncertainties. Adaptive management applies the tools of structured decision making and requires monitoring, evaluation, and adjustment of management. Adaptive governance, involving sharing of power and knowledge among relevant stakeholders, is often required to address conflict situations. Natural resource laws and regulations can present a barrier to adaptive management when requirements for legal certainty are met with environmental uncertainty. However, adaptive management is possible, as illustrated by two cases presented in this chapter. Despite challenges and limitations, when applied appropriately adaptive management leads to improved management through structured learning, and rangeland management is an area in which adaptive management shows promise and should be further explored

    Conflicting values: ecosystem services and invasive tree management

    Get PDF
    Tree species have been planted widely beyond their native ranges to provide or enhance ecosystem services such as timber and fibre production, erosion control, and aesthetic or amenity benefits. At the same time, non-native tree species can have strongly negative impacts on ecosystem services when they naturalize and subsequently become invasive and disrupt or transform communities and ecosystems. The dichotomy between positive and negative effects on ecosystem services has led to significant conflicts over the removal of non-native invasive tree species worldwide. These conflicts are often viewed in only a local context but we suggest that a global synthesis sheds important light on the dimensions of the phenomenon. We collated examples of conflict surrounding the control or management of tree invasions where conflict has caused delay, increased cost, or cessation of projects aimed at invasive tree removal. We found that conflicts span a diverse range of taxa, systems and countries, and that most conflicts emerge around three areas: urban and near-urban trees; trees that provide direct economic benefits; and invasive trees that are used by native species for habitat or food. We suggest that such conflict should be seen as a normal occurrence in invasive tree removal. Assessing both positive and negative effects of invasive species on multiple ecosystem services may provide a useful framework for the resolution of conflicts
    corecore