75 research outputs found

    Role of low intensity environmental disturbance in structuring the earliest (Ediacaran) macrobenthic tiered communities

    Get PDF
    Rangeomorphs were important components of Ediacaran macrobenthic ecosystems, yet their biology and ecology remain poorly constrained. They formed high-density, tiered communities that were subjected to intermittent burial events, the largest of which killed entire communities. Abundant thin event beds in the Ediacaran succession of Charnwood Forest indicate the additional, frequent impact of minor obrution events. The type surface of Charniamasoni is immediately underlain by one such lamina (a tuff) and preserves a distinctly bimodal population. It is dominated by Charnia fronds that are of smaller or comparable length to the holotype (19.4 cm), but also includes notably larger specimens (N45 cm) that would traditionally have been assigned to Charnia grandis. Multiple morphological- and morphometric parameters (length, width, spacing of primary branches) demonstrate that these are indistinguishable from the holotype of C. masoni, affirming the synonymy of the two taxa. Nevertheless, these outsized individuals are distinguished by their proportionally fewer primary branches per unit length. Taphonomic evidence indicates that they were survivors of an incumbent population, the rest of which was culled by a minor ashfall.We suggest that this temporary reduction in competition from neighbours allowed the survivors to grow larger and thereby gain access to a greater proportion of the water column. As the community recovered, their large sizewould have continued to provide themwith an advantage, divorcing them from the density-dependent competition seen in the new understory. The interlude between cohorts implies that newrecruitswere substrate-sensitive, presumably awaiting re-establishment of the biomat. Sub-lethal disturbance events thus played a significant role in structuring Ediacaran communities, and help explain the observed bed-by-bed variability. Taken as a whole, the growth trajectory of C. masoni resembles that of extant organismswith indeterminate growth programmes and no genetically-controlled upper size limit.PRW and CGK were supported by NERC grant NE/I005927/1. We thank our colleagues Mark Dean, Sue Martin, Louise Neep, Scott Renshaw and Paul Shepherd for assistance with moulding and casting; Paul Witney and Simon Harris for photography; and Henry Holbrook for drafting Figs. 1 and 2. We gratefully acknowledge the help in facilitating site access given by Natural England, the Mistaken Point Ecological Reserve (Parks and Natural Areas Division, Government of Newfoundland and Labrador) and landowners in Charnwood Forest. We enjoyed useful discussions with Alex Liu and Helen Boynton, and Mark Woods, Guy Harrington, Lidya Tarhan and two anonymous referees are thanked for their constructive comments on the manuscript.This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S0031018215001649

    ISOTOPIC ANALYSIS OF JURASSIC (CALLOVIAN) MOLLUSKS FROM THE CHRISTIAN MALFORD LAGERSTATTE (UK): IMPLICATIONS FOR OCEAN WATER TEMPERATURE ESTIMATES BASED ON BELEMNOIDS

    Get PDF
    Isotopic data (C and O) derived from Callovian (Middle Jurassic) mollusks (bivalves, ammonites and belemnoids, including true belemnites and Belemnotheutis) are presented from a narrow stratigraphic interval in the Christian Malford Lagerstätte, UK. The exceptionally well-preserved mollusks include aragonite-calcite pairs precipitated by individual belemnite animals that enable an assessment of possible “vital” effects and the reliability of using belemnite calcite to determine ocean water compositions. The oxygen isotope data derived from the calcitic rostra of the belemnites (Cylindroteuthis) show modest variability, ranging from −1.2 to 0.9‰ (V-PDB), while their accompanying aragonitic phragmocones range from −1.4 to 0.0‰. Data derived from the ammonite Kosmoceras show some scatter, with oxygen isotope values varying from −3.6 to −0.2‰. The aragonite data from Cylindroteuthis, Kosmoceras and Belemnotheutis all overlap, suggesting they inhabited similar (surface) water depths. However, the corresponding data from the calcitic rostra of the Cylindroteuthis specimens suggest temperatures ∼ 5°C cooler. As we have analyzed aragonite-calcite pairs, the discrepancy cannot be explained by environmental effects. Though clearly a vital effect, it is difficult to resolve whether the temperatures derived from the aragonite (phragmocone) are too warm or from the calcite (rostrum) are too cool. Consequently, the applicability of standard paleotemperature equations to Cylindroteuthid belemnite rostra remains unproven. Sequentially sampled ontogenetic isotope data derived from Belemnotheutis phragmocones reveal only modest δ18O variation, consistent with limited movement between warmer (shallower) and cooler (deeper) waters. A coincidental systematic pattern of δ13C enrichment may signal changes in metabolic activity associated with a shift in ecology or feeding with age

    Rangeomorph classification schemes and intra-specific variation: are all characters created equal?

    Get PDF
    Rangeomorphs from the Ediacaran of Avalonia are among the oldest known complex macrofossils and our understanding of their ecology, ontogeny and phylogenetic relationships relies on accurate and consistent classification. There are a number of disparate classification schemes for this group, which dominantly rely on a combination of their branching characters and shape metrics. Using multivariate statistical analyses and the diverse stemmed, multifoliate rangeomorphs in Charnwood Forest (UK), we assess the taxonomic usefulness of the suite of characters currently in use. These techniques allow us to successfully discriminate taxonomic groupings without a priori assumptions or weighting of characters and to document a hitherto unrecognized level of variation within single taxonomic groups. Variation within the currently defined genus Primocandelabrum is too great to be realistically assigned to different species and may instead reflect primary character diversity, ontogenetic changes in character state or ecophenotypic variability. Its recognition cautions against generic-level diagnoses based on single differences in character state and will be crucial in understanding the mode of growth of these enigmatic organisms.CGK and PRW were funded by National Environment Research Council grant NE/1005927/1. CGK also acknowledges a Research Studentship funded by the Cambridge Philosophical Society

    Controls on gut phosphatisation : the trilobites from the Weeks Formation Lagerstätte (Cambrian; Utah)

    Get PDF
    Despite being internal organs, digestive structures are frequently preserved in Cambrian Lagerstätten. However, the reasons for their fossilisation and their biological implications remain to be thoroughly explored. This is particularly true with arthropods--typically the most diverse fossilised organisms in Cambrian ecosystems--where digestive structures represent an as-yet underexploited alternative to appendage morphology for inferences on their biology. Here we describe the phosphatised digestive structures of three trilobite species from the Cambrian Weeks Formation Lagerstätte (Utah). Their exquisite, three-dimensional preservation reveals unique details on trilobite internal anatomy, such as the position of the mouth and the absence of a differentiated crop. In addition, the presence of paired pygidial organs of an unknown function is reported for the first time. This exceptional material enables exploration of the relationships between gut phosphatisation and the biology of organisms. Indeed, soft-tissue preservation is unusual in these fossils as it is restricted to the digestive structures, which indicates that the gut played a central role in its own phosphatisation. We hypothesize that the gut provided a microenvironment where special conditions could develop and harboured a source of phosphorus. The fact that gut phosphatization has almost exclusively been observed in arthropods could be explained by their uncommon ability to store ions (including phosphorous) in their digestive tissues. However, in some specimens from the Weeks Formation, the phosphatisation extends to the entire digestive system, suggesting that trilobites might have had some biological particularities not observed in modern arthropods. We speculate that one of them might have been an increased capacity for ion storage in the gut tissues, related to the moulting of their heavily-mineralised carapace

    Tracking Holocene palaeostratification and productivity changes in the Western Irish Sea: A multi-proxy record

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.The Western Irish Sea preserves an exceptionally thick (ca. 40 m) Holocene succession that is ideally suited to understanding the pattern of palaeostratification and water mass productivity changes in the region, and their relationship with sea level, sedimentation, and biota. Additionally, the presence of shallow-buried methane provides an opportunity to explore its potential impact on the local pattern of Holocene marine environmental change. Multi-proxy investigation of a cored borehole succession through the Holocene interval tracks changes from mixed to seasonally stratified conditions. In the earliest Holocene (11.2–10 ka), high productivity, mixed water conditions prevailed, with abundant and diverse foraminifera and dominant heterotrophic dinoflagellate cysts. Productivity was probably driven by high nutrient fluxes related to high rates of sedimentation (>1600 cm/kyr), in turn influenced by relatively low sea level and restricted sediment accommodation space across shelf areas to the east of the borehole site (eastern Irish Sea Basin). With rising sea level in the later part of the Early Holocene, the region evolved into a relatively lower productivity mixed water mass system, with significant changes in ecology revealed by dinoflagellate cysts and foraminifera. In the latest Early Holocene and earliest Mid Holocene (ca. 8.4–8.2 ka) a return to higher productivity is signalled by dinoflagellate cyst data; a result of seasonal stratification becoming established, evidenced by sharply increased summer sea surface temperature estimates (typically 16–17 °C) that contrast with an opposite (more positive) trend in δ18O values for benthic foraminifera. Reductions in turbulent mixing associated with stratification might have exacerbated the palaeoecological impact of shallow-buried methane associated with the borehole site, potentially evidenced by a significant change in dominant benthic foraminifera and strong, localised excursions in the benthic δ13C/δ18O record

    A new fireworm (Amphinomidae) from the Cretaceous of Lebanon identified from three-dimensionally preserved myoanatomy

    Get PDF
    Š 2015 Parry et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article

    Unlocking preservation bias in the amber insect fossil record through experimental decay.

    Get PDF
    Fossils entombed in amber are a unique resource for reconstructing forest ecosystems, and resolving relationships of modern taxa. Such fossils are famous for their perfect, life-like appearance. However, preservation quality is vast with many sites showing only cuticular preservation, or no fossils. The taphonomic processes that control this range are largely unknown; as such, we know little about potential bias in this important record. Here we employ actualistic experiments, using, fruit flies and modern tree resin to determine whether resin type, gut microbiota, and dehydration prior to entombment affects decay. We used solid phase microextraction gas chromatography-mass spectrometry (SPME GC-MS) to confirm distinct tree resin chemistry; gut microbiota of flies was modified using antibiotics and categorized though sequencing. Decay was assessed using phase contrast synchrotron tomography. Resin type demonstrates a significant control on decay rate. The composition of the gut microbiota was also influential, with minor changes in composition affecting decay rate. Dehydration prior to entombment, contrary to expectations, enhanced decay. Our analyses show that there is potential significant bias in the amber fossil record, especially between sites with different resin types where ecological completeness and preservational fidelity are likely affected

    Convergent Evolution in Aquatic Tetrapods: Insights from an Exceptional Fossil Mosasaur

    Get PDF
    Mosasaurs (family Mosasauridae) are a diverse group of secondarily aquatic lizards that radiated into marine environments during the Late Cretaceous (98–65 million years ago). For the most part, they have been considered to be simple anguilliform swimmers – i.e., their propulsive force was generated by means of lateral undulations incorporating the greater part of the body – with unremarkable, dorsoventrally narrow tails and long, lizard-like bodies. Convergence with the specialized fusiform body shape and inferred carangiform locomotory style (in which only a portion of the posterior body participates in the thrust-producing flexure) of ichthyosaurs and metriorhynchid crocodyliform reptiles, along with cetaceans, has so far only been recognized in Plotosaurus, the most highly derived member of the Mosasauridae. Here we report on an exceptionally complete specimen (LACM 128319) of the moderately derived genus Platecarpus that preserves soft tissues and anatomical details (e.g., large portions of integument, a partial body outline, putative skin color markings, a downturned tail, branching bronchial tubes, and probable visceral traces) to an extent that has never been seen previously in any mosasaur. Our study demonstrates that a streamlined body plan and crescent-shaped caudal fin were already well established in Platecarpus, a taxon that preceded Plotosaurus by 20 million years. These new data expand our understanding of convergent evolution among marine reptiles, and provide insights into their evolution's tempo and mode

    Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates

    Full text link
    Microbial mats have been hypothesized to improve the persistence and the preservation of organic remains during fossilization processes. We test this hypothesis with long-term experiments (up to 5.5 years) using invertebrate and vertebrate corpses.Once placed on mats,the microbial community coats the corpses and forms a three-dimensional sarcophagus composed of microbial cells and exopolymeric substances (EPS). This coverage provides a template for i) moulding superficial features, resulting in negative impressions, and ii) generating replicas.The impressions of fly setulae, fish scales and frog skin verrucae are shaped mainly by small cells in an EPS matrix. Microbes also replicate delicate structures such as the three successive layers that compose a fish eye.The sarcophagus protects the body integrity, allowing the persistence of inner organs such as the ovaries and digestive apparatus in flies,the swim bladder and muscles in fish, and the bone marrow in frog legs.This study brings strong experimental evidence to the idea that mats favour metazoan fossilization by moulding, replicating and delaying decay. Rapid burial has classically been invoked as a mechanism to explain exceptional preservation. However, mats may play a similar role during early fossilization as they can preserve complex features for a long timeThis work, which is part of the research projects CGL2013-42643P and the research grant supporting M. Iniesto were funded by the Spanish Ministry of Economy and Competitiveness. The SEM facility at IMPMC was supported by Region Ile de France grant SESAME 2006 I-07-593/R, INSU-CNRS, INP-CNRS, and University Pierre et Marie Curie, Paris. SEM analyses performed for this study were supported by a grant from the Foundation Simone et Cino Del Duca (PI: K. Benzerara). Some SEM observations were also conducted at SIdI UAM (Madrid). Environmental SEM observations were performed at the MNCN (Madrid

    First Evidence of Reproductive Adaptation to “Island Effect” of a Dwarf Cretaceous Romanian Titanosaur, with Embryonic Integument In Ovo

    Get PDF
    <div><h3>Background</h3><p>The Cretaceous vertebrate assemblages of Romania are famous for geographically endemic dwarfed dinosaur taxa. We report the first complete egg clutches of a dwarf lithostrotian titanosaur, from Toteşti, Romania, and its reproductive adaptation to the “island effect”.</p> <h3>Methodology/Findings</h3><p>The egg clutches were discovered in sequential sedimentary layers of the Maastrichtian Sânpetru Formation, Toteşti. The occurrence of 11 homogenous clutches in successive strata suggests philopatry by the same dinosaur species, which laid clutches averaging four ∼12 cm diameters eggs. The eggs and eggshells display numerous characters shared with the positively identified material from egg-bearing level 4 of the Auca Mahuevo (Patagonia, Argentina) nemegtosaurid lithostrotian nesting site. Microscopic embryonic integument with bacterial evidences was recovered in one egg. The millimeter-size embryonic integument displays micron size dermal papillae implying an early embryological stage at the time of death, likely corresponding to early organogenesis before the skeleton formation.</p> <h3>Conclusions/Significance</h3><p>The shared oological characters between the Haţeg specimens and their mainland relatives suggest a highly conservative reproductive template, while the nest decrease in egg numbers per clutch may reflect an adaptive trait to a smaller body size due to the “island effect”. The combined presence of the lithostrotian egg and its embryo in the Early Cretaceous Gobi coupled with the oological similarities between the Haţeg and Auca Mahuevo oological material evidence that several titanosaur species migrated from Gondwana through the Haţeg Island before or during the Aptian/Albian. It also suggests that this island might have had episodic land bridges with the rest of the European archipelago and Asia deep into the Cretaceous.</p> </div
    • …
    corecore