24 research outputs found

    A 3‐Year Sample of Almost 1,600 Elves Recorded Above South - America by the Pierre Auger Cosmic‐Ray Observatory

    Get PDF

    Observation of inclined EeV air showers with the radio detector of the Pierre Auger Observatory

    Get PDF
    With the Auger Engineering Radio Array (AERA) of the Pierre AugerObservatory, we have observed the radio emission from 561 extensive air showerswith zenith angles between 60^\circ and 84^\circ. In contrast to airshowers with more vertical incidence, these inclined air showers illuminatelarge ground areas of several km2^2 with radio signals detectable in the 30 to80\,MHz band. A comparison of the measured radio-signal amplitudes with MonteCarlo simulations of a subset of 50 events for which we reconstruct the energyusing the Auger surface detector shows agreement within the uncertainties ofthe current analysis. As expected for forward-beamed radio emission undergoingno significant absorption or scattering in the atmosphere, the area illuminatedby radio signals grows with the zenith angle of the air shower. Inclined airshowers with EeV energies are thus measurable with sparse radio-antenna arrayswith grid sizes of a km or more. This is particularly attractive as radiodetection provides direct access to the energy in the electromagnetic cascadeof an air shower, which in case of inclined air showers is not accessible byarrays of particle detectors on the ground

    Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory

    Get PDF

    Multiple Scenario Generation of Subsurface Models:Consistent Integration of Information from Geophysical and Geological Data throuh Combination of Probabilistic Inverse Problem Theory and Geostatistics

    Get PDF
    Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming \u3c4 neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in 3c 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an E\u3bd-2 spectrum in the energy range 1.0 7 1017 eV -2.5 7 1019 eV is E2 dN\u3bd/dE\u3bd < 4.4 7 10-9 GeV cm-2 s-1 sr-1, placing strong constraints on several models of neutrino production at EeV energies and on the properties of the sources of ultra-high-energy cosmic rays

    The Auger Raman Lidar: several years of continuous observations

    Get PDF
    The Raman lidar at the Central (Raman) Laser Facility of the Pierre Auger Observatory in Argentina, has been operational since September 2013. In this paper, the Auger Raman Lidar performance is discussed in terms of the data quality for the assessment of the aerosol contribution to the atmospheric UV optical transparency, and how much this is important for the reconstruction of the UHECR properties, based on the Auger Fluorescence Detector observations

    Measurement of the average shape of longitudinal profiles of cosmic-ray air showers at the Pierre Auger Observatory

    Get PDF
    The profile of the longitudinal development of showers produced by ultra-high energy cosmic rays carries information related to the interaction properties of the primary particles with atmospheric nuclei. In this work, we present the first measurement of the average shower profile in traversed atmospheric depth at the Pierre Auger Observatory. The shapes of profiles are well reproduced by the Gaisser-Hillas parametrization within the range studied, for E>10 17.8 eV . A detailed analysis of the systematic uncertainties is performed using ten years of data and a full detector simulation. The average shape is quantified using two variables related to the width and asymmetry of the profile, and the results are compared with predictions of hadronic interaction models for different primary particles

    Atmospheric Monitoring at a Cosmic Ray Observatory - a long-lasting endeavour

    No full text
    The Pierre Auger Observatory for detecting ultrahigh energy cosmic rays has been founded in 1999. After a main planning and construction phase of about five years, the regular data taking started in 2004, but it took another four years until the full surface detector array was deployed. In parallel to the main detectors of the Observatory, a comprehensive set of instruments for monitoring the atmospheric conditions above the array was developed and installed as varying atmospheric conditions influence the development and detection of extensive air showers.The multitude of atmospheric monitoring installations at the Pierre Auger Observatory will be presented as well as the challenges and efforts to run such instruments for several decades

    Searches for ultrahigh-energy neutrinos from gravitational wave events with the Pierre Auger Observatory

    No full text
    corecore