2,985 research outputs found
A conceptual design and operational characteristics for a Mars rover for a 1979 or 1981 Viking science mission
The feasibility of a small Mars rover for use on a 1979 or 1981 Viking mission was studied and a preliminary design concept was developed. Three variations of the concept were developed to provide comparisons in mobility and science capability of the rover. Final masses of the three rover designs were approximately 35 kg, 40 kg, and 69 kg. The smallest rover is umbilically connected to the lander for power and communications purposes whereas the larger two rovers have secondary battery power and a 2-way very high frequency communication link to the lander. The capability for carrying Viking rovers (including development system) to the surface of Mars was considered first. It was found to be feasible to carry rovers of over 100 kg. Virtually all rover systems were then studied briefly to determine a feasible system concept and a practical interface with the comparable system of a 1979 or 1981 lander vehicle
Classical and quantum two-dimensional anisotropic Heisenberg antiferromagnets
The classical and the quantum, spin $S=1/2, versions of the uniaxially
anisotropic Heisenberg antiferromagnet on a square lattice in a field parallel
to the easy axis are studied using Monte Carlo techniques. For the classical
version, attention is drawn to biconical structures and fluctuations at low
temperatures in the transition region between the antiferromagnetic and
spin-flop phases. For the quantum version, the previously proposed scenario of
a first-order transition between the antiferromagnetic and spin-flop phases
with a critical endpoint and a tricritical point is scrutinized.Comment: 5 pages, 7 figures, accepted by Phys. Rev.
TRIZ based Interface Conflict Resolving Strategies for Modular Product Architectures
In product development, the chosen product architecture often possesses characteristics of both modular and integral design. Within a modular architecture, a Function-Behavior-Structure (FBS) model has been applied to describe modules and their interfaces. To resolve emerging interface conflicts, several strategies based on both modular and integral action have been formulated. The strategies encompass TRIZ methods, as they focus strongly on product innovation. The purpose of the presented study is to combine TRIZ techniques and FBS modeling while trying to solve interface conflicts at a low level of abstraction. The interface conflict resolving strategies have been applied on an industrial case study successfull
Ridge Estimation of Inverse Covariance Matrices from High-Dimensional Data
We study ridge estimation of the precision matrix in the high-dimensional
setting where the number of variables is large relative to the sample size. We
first review two archetypal ridge estimators and note that their utilized
penalties do not coincide with common ridge penalties. Subsequently, starting
from a common ridge penalty, analytic expressions are derived for two
alternative ridge estimators of the precision matrix. The alternative
estimators are compared to the archetypes with regard to eigenvalue shrinkage
and risk. The alternatives are also compared to the graphical lasso within the
context of graphical modeling. The comparisons may give reason to prefer the
proposed alternative estimators
Bio-ethanol Production from Wheat in the Winter Rainfall Region of South Africa: A Quantitative Risk Analysis
Contrary to developments in other parts of the world, South Africa has not developed a bio-ethanol industry. The objective was to quantify the risks and economic viability of a wheat based bio-ethanol plant in the winter rainfall region of South Africa. Monte Carlo simulation of a bio-ethanol plant was used to quantify the risk that investors will likely face. Under the Base scenario a 103 million liter bio-ethanol plant would not offer a reasonable chance of being economically viable. Alternative price enhancing policies were analyzed to determine policy changes needed to make a bio-ethanol plant economically viable in the region.biofuels, ethanol, risk analysis, simulation, economic viability, Simetar, SERF, Crop Production/Industries, Resource /Energy Economics and Policy,
Classical and quantum anisotropic Heisenberg antiferromagnets
We study classical and quantum Heisenberg antiferromagnets with exchange
anisotropy of XXZ-type and crystal field single-ion terms of quadratic and
cubic form in a field. The magnets display a variety of phases, including the
spin-flop (or, in the quantum case, spin-liquid) and biconical (corresponding,
in the quantum lattice gas description, to supersolid) phases. Applying
ground-state considerations, Monte Carlo and density matrix renormalization
group methods, the impact of quantum effects and lattice dimension is analysed.
Interesting critical and multicritical behaviour may occur at quantum and
thermal phase transitions.Comment: 13 pages, 14 figures, conferenc
- …