

Corresponding author Wessel Wits **Assistant Professor** Department of Design, Production and Management +31 53 489 2266

w.w.wits@utwente.nl

ENHANCING THERMAL MANAGEMENT APPLICATIONS THROUGH POROUS STRUCTURES FABRICATED BY SELECTIVE LASER MELTING

Davoud Jafari, Wessel W. Wits

Faculty of Engineering Technology, University of Twente, Enschede, Netherlands

Highlights

- ✓ A rectangular-shaped stainless steel 316L porous structure is additively manufactured by selective laser melting (SLM).
- ✓ Effective thermal conductivity to the porous structure have been experimentally analyzed.
- ✓ The experimentally obtained values of thermal conductivity do not correspond well with correlations available in the literature.
- ✓ The experimental results show that SLM technology can be used to fabricate porous structures for heat pipes technology.

Fabrication & Morphology analysis

- ✓ The porous sample is manufactured using a Concept Laser Mlab Cusing 90, 3D metal printing machine.
- ✓ The porous structure of 1 x 20 x 40 mm³ is manufactured with a 500 µm octahedral unit cell size.
- ✓ SS 316L powder size is in the range of 15-20 µm and pore sizes in the fabricated sample are around 160µm.
- ✓ The porosity of the sample, measured by the Archimedes method, is 0.461.

The fabricated sample

Spherical powder and the build structure

Vacuum & Filling

Heat Source

Development of experimental devices and results

Effective thermal conductivity

√The experimental set up includes a heating and cooling. sections and the test chamber.

✓ Using the Fourier model the porous media effective thermal conductivity is calculated.

Copper Clamp

Comparison of the experimental values of the effective thermal conductivity of the water-saturated porous sample

The effective thermal conductivity of the sample for different saturated fluids

Droplet test

✓ A water droplet (4.5 µL) is deposited into the wick structure.

✓ The droplet infiltrates the porous layer in <0.02 s confirming excellent wetting.
</p>

Instantaneous state photos of a deionized water droplet released onto the porous sample

Conclusions

- ✓ The effective thermal diffusivity is in the range of 1.8~2.2 W/m⋅K in vacuum condition, ~3 W/m⋅K for ethylene glycol and ~6 W/m⋅K for water, thus observing high sensitivity to the interstitial fluid.
- ✓ A comparison of the experimental results with available correlations in the literature shows the effective thermal conductivity is between the upper and lower Maxwell model, albeit with a fairly large margin.

