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Abstract 
To broaden the scope of inkjet printing, this paper focuses on printing of an organic silver complex 
ink on glass substrates towards the fabrication of metallic 3D microstructures. The droplet 
formation sequence of the inkjet printer is optimised to print continuous layers of metal. A brief 
discussion on orientation trials, aimed at optimising the print parameters, is followed by two 
different methodologies of printing 3D microstructures: wet-in-wet and wet-in-dry. The surface 
topography of the end product and the possibility to stack layer-upon-layer using these two 
methodologies are the main criteria investigated in this paper. 
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1 INTRODUCTION 

Inkjet printing is an additive process that can 
potentially reduce material wastage, enhance 
flexibility and reduce the number of process steps. It 
can be classified under rapid manufacturing as well 
as maskless manufacturing techniques. In the 
context of electronics fabrication, inkjet printing has 
made rapid strides of late, and is seen as a key 
enabler to the widespread application of printed 
electronics or organic electronics. Most of the 
current research activities dealing with inkjet printed 
electronics involve printing of a single ink layer 
which, after curing, would either serve the intended 
purpose as such, or act as a seed layer for a 
subsequent plating process. Some examples for the 
former can be found in [1-3], while a recent example 
for inkjet printing of a seed layer for electroless 
plating was published in [4]. 

Development of inks with low sintering temperature, 
such as a nanoparticle-based silver ink, has given a 
major impetus to research activities in this field. 
These nanoparticle inks consist of metal 
nanoparticles, typically silver or gold, dispersed in a 
solvent that enables the ink to be jetted from the 
nozzle of an inkjet printer. Due to the so-called 
thermodynamic size effect [5], the melting point of 
nanoparticles drops drastically in comparison with 
that of the bulk metal. For instance, bulk gold melts 
at more than 1000°C, whereas nanoparticle gold 
with a diameter of 2 nm melts approximately at 
150°C [6]. But in most cases, the nanoparticles are 
not heated till they melt; they are subjected to 
heating below their melting temperature, leading to 
a combination of particle growth and grain-boundary 
migration [7]. The reason is, typical nanoparticle 
inks available in the market for inkjet printing have a 
particle size of 5 nm to 10 nm, and the melting point 
of such particles is much higher than the value 
quoted above, making melting impractical for most 
applications. Ideally, the sintering process should 

vaporise all the solvent as well as additives present 
in the ink, so that the sintered metal is close to 
100% dense. The recommended sintering tempera-
tures of the nanoparticle-based inks currently 
available are in the order of 150°C - 200°C. There is 
another type of ink available in the market, based on 
a non-particle formulation containing an organic 
silver complex compound [8]. This ink type has a 
lower sintering temperature than most nanoparticle-
based inks, making it suitable for a wider range of 
substrates. However, even in this case, the sintering 
temperature is generally more than 100°C. 

This study aims to broaden the scope of inkjet 
printing to encompass application areas that are 
closely associated with electronics such as capillary 
microstructures for cooling of electronic circuits [9], 
as well as other application areas such as lab-on-a-
chip and microelectromechanical systems (MEMS). 
Even though such applications of inkjet printing 
have already been discussed in [10] and [11], there 
are still some missing pieces to the jigsaw puzzle, 
namely the feasibility to stack inkjet printed layers 
(i.e. layer-upon-layer) to fabricate 3D micro-
structures and the challenges that need to be 
overcome to achieve the same. These bring in new 
factors such as surface roughness of the stacked 
layers, their cohesion, faults induced due to thermal 
stresses resulting from sintering, accuracy of 
multiple stacked layers etc. This paper focuses on 
different ways of printing 3D metallic micro-
structures, and the resulting issues namely surface 
roughness and accuracy of the end product. 

 

2 EXPERIMENTAL PART 

2.1 Materials and methods 

An organic silver complex compound (TEC-IJ-040 
from Inktec Co. Ltd., South Korea) was used as the 
functional ink to generate structures on glass 
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substrates. According to the suppliers, the organic 
silver complex compound makes up less than 77% 
of the ink by weight; the rest is made up of methanol 
and anisole. To extract the silver component of the 
ink, it should be sintered at 150°C for 30 minutes. A 
commercially available drop-on-demand inkjet 
printer (Jetlab-4, from MicroFab Technologies Inc., 
USA) was used for all the printing trials. The printer 
is capable of independent X, Y and Z-stage 
movement, with the first two used to position the 
substrate holder, and the Z-stage, to adjust the 
height of the printhead on which the nozzle is 
mounted. All the layers were printed using a piezo-
actuated nozzle with an inner diameter of 80 μm. It 
is possible to heat up the substrate holder and the 
printhead independently up to 100°C. The printer is 
equipped with two stroboscopic cameras, one to 
observe the droplet formation from the nozzle, and 
the other, mounted vertically with respect to the 
plane of printing, to view the results of printing on 
the substrate. Interferometric analyses of the printed 
structures were performed using a Micromap 560 
(from ATOS GmbH, Germany), to determine their 
surface roughness and thickness. An optical 
microscope (Leitz DMRX from Leica Microsystems, 
Germany) was used for studying the 
edges/boundaries of the structures. 

2.2 Orientation trials 

Before inkjet printing layer-upon-layer, single dots 
and single layers of silver were printed and 
analysed. Figure 1 shows the droplet formation 
sequence from the nozzle of the inkjet printer. As 
seen from the sequence of pictures in this figure, a 
jet of the ink is formed due to piezo-actuation that 
gives rise to a pressure wave. The jet then breaks 
up creating a droplet. This is explained by the 
Rayleigh-Tomotika instability, according to which the 
jet breaks up if the wavelength of the disturbance 
i.e. pressure wave is greater than the diameter of 
the jet [12]. 

Figure 2 shows a glass slide on which individual 
silver droplets were printed and Figure 3 shows a 
glass slide on which a continuous layer was printed. 
The extent of droplet spreading on the substrate 
depends on the surface tension of the ink and the 
surface energy of the substrate material. In general, 
if the surface energy of the substrate is high, the 

droplet spreading is more and the contact angle is 
small. Depending on the application, the surface 
properties of the substrate can be modified to make 
it hydrophilic or hydrophobic, and consequently 
influence droplet spreading. The droplet spacing 
was adjusted in X and Y directions (Z being the 
thickness direction) to obtain a continuous printed 
structure like the one shown in Figure 3. However, 
arbitrary values for X and Y pitch cannot be chosen; 
instead, they should be determined empirically to 
avoid cross-sectional irregularities. This is illustrated 
by Figure 4: a single line, i.e. a structure printed by 
adding droplets in only one direction, was printed 
with 3 different droplet spacing: 100 µm, 110 µm 
and 120 µm. The line printed with 100 µm spacing is 
the best one of the lot. Scalloping of the edges of 
the lines printed with the other two droplet spacing 
values could be observed from the figure. If the 
spacing is reduced below 100 µm, bulging of the 
line is observed. 

 
Figure 1 - Droplet formation from the nozzle of an inkjet printer. 

 

 
 

Figure 2 - Inkjet printed droplets after 
spreading on a glass surface. 

 

 
 

Figure 3 - A structure printed by 
depositing a rectangular array of 
droplets on a glass substrate. 
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2.3 Printing of 3D microstructures 

There are 2 possibilities to fabricate 3D 
microstructures using inkjet printing: (1) wet-in-wet 
and (2) wet-in-dry. Wet-in-wet printing involves 
printing a layer of ink without drying the previous 
layer i.e. the previous layer is still in a ‘wet’ 
condition. Wet-in-dry printing could be done in 2 
ways: (a) printing a layer after the previous one is 
minimally heated to remove the solvent and other 
non-metallic content of the ink, or (b) printing a layer 
after the previous one is sintered completely. In this 
research, only the former approach along with wet-
in-wet was followed. The approach where the 
previous track is completely sintered was impractical 
with the available setup, as the substrate has to be 
heated to 150°C for complete sintering. As already 
mentioned, the available substrate holder could be 
heated only up to 100°C. When the sintering was 
done externally, the lack of pick-and-place devices 
led to positional inaccuracies. Hence, from here on, 
wet-in-dry refers only to the chosen method of 

minimal heating of the substrate. In this case, the 
temperature of the substrate holder was maintained 
at 90°C to induce flash evaporation of the solvent 
and other non-metallic components. This gave rise 
to another problem: since the nozzle of the printer is 
very close to the substrate (1 mm), the flow 
properties of the ink were altered during printing as 
a result of an increase in temperature. The change 
in properties of the ink resulted in an increase in 
droplet size and frequent blocking of the nozzle due 
to solvent evaporation. Nevertheless, this approach 
was followed due to even more complex problems 
involved in external heating. 

With a droplet pitch of 100 µm in X and Y directions, 
multiple layers were printed on glass substrates in 
wet-in-wet and wet-in-dry modes. In both cases, the 
subsequent layers were printed without any pause 
in between. The only difference between them is the 
influence of substrate heating. Initially, 3 stacked 
layers were printed in both cases and the printed 
structures were observed with an optical microscope 
and interferometer. Surface roughness and layer 
thickness of the structures were the criteria studied. 
Based on the results of the analyses, it was decided 
to continue only with the wet-in-dry approach. Up to 
5 stacked layers were printed using this approach 
and analysed. 

 

3 RESULTS AND DISCUSSION 

The structures printed using the wet-in-wet 
approach highlighted the following shortcomings: (1) 
there was no linear or quasi-linear increase of 
thickness of the printed structure with the increase 
in number of layers, as shown in Figures 5(A) to (C), 
and (2) the surface roughness was pronounced and 
unsuitable for most practical applications on thrice-
printed structure as can also be seen in Figure 5(C). 
It was also observed that the increase in line 
thickness in this case was less than the other (wet-
in-dry) approach. 

Figure 5 also clearly shows that a single layer has a 
curved profile (cross-section) whereas the 
subsequent layers led to the flattening and widening 
of the cross-section. This can be attributed to the 
impact of a droplet on the previous undried one and 
the subsequent re-arranging influenced by the 
surface tension of the ink as well as the surface 
energy of the substrate. Figure 6 shows the 
flattening of the undried first droplet when a second 
droplet is deposited on it. 

The high surface roughness seen in Figure 5(C) can 
be attributed to the drying process; however, the 
exact mechanism is not clear. As mentioned, the 
surface roughness of the printed structure increased 
markedly after the second layer. It was also 
observed from the lines printed using the wet-in-wet 
approach that the line width increases with the 
number of layers. This can be clearly seen from 
Figures 7(A) to (C). 

 
 

 
 

 
 

Figure 4 - Inkjet printed lines on a glass 
substrate with (A) 100 μm droplet 
spacing, (B) 110 μm droplet spacing 
and (C) 120 μm droplet spacing. 
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Figure 5 - 3D interferometric images of 

inkjet printed microstructures (wet-in-
wet) on glass, containing (A) 1 layer, 
(B) 2 stacked layers, and (C) 3 
stacked layers. 

  
Figure 7 - Micrographs of inkjet printed 

microstructures (wet-in-wet) on 
glass, containing (A) 1 layer, (B) 2 
stacked layers, and (C) 3 stacked 
layers. It can be clearly seen here 
that the structure shown in (C) has 
a very irregular surface topology. 

 

 

  
(a) single droplet (b) two droplets (wet-in-wet) 

 

Figure 6 - 3D interferometric images of inkjet printed droplets on glass. 
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Figure 8 - 3D interferometric images of inkjet 
printed microstructures (wet-in-dry) on 
glass, containing (A) 1 layer, (B) 2 stacked 
layers, and (C) 3 stacked layers. 

 

 

Figure 9 - Cracks on an inkjet printed layer 
after sintering. 

 
 

The wet-in-dry approach yielded better results in 
terms of the increase of layer thickness with the 
number of layers – the increase was quasi-linear, as 
shown in Figures 8(A) to (C). Moreover, there was 
no marked change in layer width. This can be 
attributed to the relative rigidity of the printed layer 
due to the evaporation of the solvent. As a result of 
this, when the next layer was printed, the spreading 
of the ink is not as pronounced as in the previous 
case. Also, the printed structures were not as rough 
as those printed using the previous approach. 
These 3 criteria, viz. quasi-linear increase in layer 
thickness, minimal increase in line width and low 
surface roughness values were met satisfactory by 
the wet-in-dry approach for up to 5 stacked layers. 

Irrespective of the method of printing, cracks were 
seen on printed layers after sintering. An example of 
this is shown in Figure 9. This can be attributed to 
the stresses induced due to sintering and 
subsequent cooling. These cracks have a 
detrimental effect on the integrity of inkjet printed 3D 
microstructures. 

 

4 CONCLUSIONS AND RECOMMENDATIONS 

The droplet spacing (pitch) is crucial for the build-up 
of 3D microstructures, in order to avoid bulging or 
scalloping of the printed structure. The wet-in-wet 
approach leads to much wider structures than 
intended and hence is not the right approach to print 
3D microstructures. Moreover, it also results in 
higher surface roughness and lower thickness of 
printed structures than the corresponding wet-in-dry 
approach. 

The wet-in-dry approach was found to be the 
suitable approach to inkjet printing of 3D 
microstructures. Further investigations are needed 
to ascertain the suitability of this approach to print 
much thicker structures that need stacking of 10 or 
more inkjet printed layers. This could eventually lead 
to the commercial application of this approach for 
microfabrication. 

Though only one type of ink was used in this study, 
the methodology adopted can be applied to other 
types of inks as well. Moreover, in cases where the 
end product needs to be fabricated using metallic 
inks, inkjet printing can be used to print just the seed 
layer; subsequently, copper can be plated on this 
seed layer to achieve the desired layer thickness. 
This has certain advantages, as discussed in [4]. 
This paper was published under the same research 
framework as this study. 

It is recommended to test the printed structures 
containing multiple stacked layers for adhesion and 
cohesion, to find out how robust the end products 
are. Peel test, pull-off test and scotch tape test are 
some of the testing methodologies that can be used 
for this purpose. It would also be worthwhile to find 
out ways to minimise the formation of cracks on 
printed structures after sintering. 
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