14 research outputs found

    Towards microwave based ion trap quantum technology

    Get PDF
    Scalability is a challenging yet key aspect required for large scale quantum computing and simulation using ions trapped in radio-frequency (rf) Paul traps. In this thesis 171Yb+ ions are used to demonstrate a magnetic field insensitive qubit which has a measured coherence time of 1.5 s, making it an ideal candidate to use for storing quantum information. A magnetic field sensitive qubit is also characterised which can be used for the implementation of multi-qubit gates using a potentially very scalable scheme based on microwaves in conjunction with a static magnetic field gradient instead of using lasers. However, the measured coherence time is limited by magnetic field fluctuations and will prohibit high fidelity gate operations from being performed. To address this issue, the preparation of a dressed-state qubit using a microwave based stimulated rapid adiabatic passage (STIRAP) pulse sequence will be presented. This qubit is protected against the noisy environment making it less sensitive to magnetic field fluctuations. The lifetime of this qubit is measured to demonstrate its suitability for storing quantum information. A powerful method for manipulating the dressed-state qubit will be presented and is used to measure a coherence time of the qubit of 500 ms which is two orders of magnitude longer compared to the magnetic field sensitive qubit. It will also be shown that our method allows for the implementation of arbitrary rotations of the dressed-state qubit on the Bloch sphere using only a single rf field. This substantially simplifies the experimental setup for single and multi-qubit gates. Furthermore, this thesis will present a experimental setup capable of successfully operating microfabricated surface ion traps. This setup is then used to operate and characterise the first two-dimensional (2D) lattice of ion traps on a microchip. A unique feature of the microfabrication technique used for this device is the extremely large voltage that can be applied which allows long ion lifetimes along with large secular frequencies to be measured, demonstrating the robustness of this device. Rudimentary shuttling between neighbouring lattice sites will be shown which could be used as part of a efficient scheme to load a large lattice of ions. One of the many applications of a 2D lattice of ions lies in the field of quantum simulations where many-body systems such as quantum magnetism, high temperature superconductivity, the fractional quantum hall effect and synthetic gauge fields can be simulated. It will be shown how making only minor modifications to the microchip the ion-ion separation can be reduced sufficiently to offer an exciting platform for the successful implementation of 2D quantum simulations. A theoretical investigation on the optimal 2D ion trap lattice geometry will also be presented with the aim to maximise the ratio of ion-ion coupling strength to decoherence from motional heating of the ions and to laser induced off-resonant coupling

    Towards microwave based ion trap quantum technology

    Get PDF
    Scalability is a challenging yet key aspect required for large scale quantum computing and simulation using ions trapped in radio-frequency (rf) Paul traps. In this thesis 171Yb+ ions are used to demonstrate a magnetic field insensitive qubit which has a measured coherence time of 1.5 s, making it an ideal candidate to use for storing quantum information. A magnetic field sensitive qubit is also characterised which can be used for the implementation of multi-qubit gates using a potentially very scalable scheme based on microwaves in conjunction with a static magnetic field gradient instead of using lasers. However, the measured coherence time is limited by magnetic field fluctuations and will prohibit high fidelity gate operations from being performed. To address this issue, the preparation of a dressed-state qubit using a microwave based stimulated rapid adiabatic passage (STIRAP) pulse sequence will be presented. This qubit is protected against the noisy environment making it less sensitive to magnetic field fluctuations. The lifetime of this qubit is measured to demonstrate its suitability for storing quantum information. A powerful method for manipulating the dressed-state qubit will be presented and is used to measure a coherence time of the qubit of 500 ms which is two orders of magnitude longer compared to the magnetic field sensitive qubit. It will also be shown that our method allows for the implementation of arbitrary rotations of the dressed-state qubit on the Bloch sphere using only a single rf field. This substantially simplifies the experimental setup for single and multi-qubit gates. Furthermore, this thesis will present a experimental setup capable of successfully operating microfabricated surface ion traps. This setup is then used to operate and characterise the first two-dimensional (2D) lattice of ion traps on a microchip. A unique feature of the microfabrication technique used for this device is the extremely large voltage that can be applied which allows long ion lifetimes along with large secular frequencies to be measured, demonstrating the robustness of this device. Rudimentary shuttling between neighbouring lattice sites will be shown which could be used as part of a efficient scheme to load a large lattice of ions. One of the many applications of a 2D lattice of ions lies in the field of quantum simulations where many-body systems such as quantum magnetism, high temperature superconductivity, the fractional quantum hall effect and synthetic gauge fields can be simulated. It will be shown how making only minor modifications to the microchip the ion-ion separation can be reduced sufficiently to offer an exciting platform for the successful implementation of 2D quantum simulations. A theoretical investigation on the optimal 2D ion trap lattice geometry will also be presented with the aim to maximise the ratio of ion-ion coupling strength to decoherence from motional heating of the ions and to laser induced off-resonant coupling

    Efficient qubit routing for a globally connected trapped ion quantum computer

    Get PDF
    The cost of enabling connectivity in noisy intermediate‐scale quantum (NISQ) devices is an important factor in determining computational power. A qubit routing algorithm is created, which enables efficient global connectivity in a previously proposed trapped ion quantum computing architecture. The routing algorithm is characterized by comparison against both a strict lower bound, and a positional swap based routing algorithm. An error model is proposed, which can be used to estimate the achievable circuit depth and quantum volume of the device as a function of experimental parameters. A new metric based on quantum volume, but with native two‐qubit gates, is used to assess the cost of connectivity relative to the upper bound of free, all to all connectivity. The metric is also used to assess a square‐grid superconducting device. These two architectures are compared and it is found that for the shuttling parameters used, the trapped ion design has a substantially lower cost associated with connectivity

    Coherent fluctuation relations: from the abstract to the concrete

    Get PDF
    Recent studies using the quantum information theoretic approach to thermodynamics show that the presence of coherence in quantum systems generates corrections to classical fluctuation theorems. To explicate the physical origins and implications of such corrections, we here convert an abstract framework of an autonomous quantum Crooks relation into quantum Crooks equalities for well-known coherent, squeezed and cat states. We further provide a proposal for a concrete experimental scenario to test these equalities. Our scheme consists of the autonomous evolution of a trapped ion and uses a position dependent AC Stark shift

    The impact of hardware specifications on reaching quantum advantage in the fault tolerant regime

    Get PDF
    We investigate how hardware specifications can impact the final run time and the required number of physical qubits to achieve a quantum advantage in the fault tolerant regime. Within a particular time frame, both the code cycle time and the number of achievable physical qubits may vary by orders of magnitude between different quantum hardware designs. We start with logical resource requirements corresponding to a quantum advantage for a particular chemistry application, simulating the FeMoco molecule, and explore to what extent slower code cycle times can be mitigated by using additional qubits. We show that in certain situations architectures with considerably slower code cycle times will still be able to reach desirable run times, provided enough physical qubits are available. We utilize various space and time optimization strategies that have been previously considered within the field of error-correcting surface codes. In particular, we compare two distinct methods of parallelization, Game of Surface Code's Units, and AutoCCZ factories, both of which enable one to incrementally speed up the computation until the reaction limited rate is reached. Finally we calculate the number of physical qubits which would be required to break the 256 bit elliptic curve encryption of keys in the Bitcoin network, within the small available time frame in which it would actually pose a threat to do so. It would require approximately 317 million physical qubits to break the encryption within one hour using the surface code, a code cycle time of 1 μs \mu s, a reaction time of 10 μs \mu s, and physical gate error of 10310^{-3}. To break the encryption instead within one day it would require 13 million physical qubits.Comment: 22 pages, 4 figure

    Quantum control methods for robust entanglement of trapped ions

    Get PDF
    A major obstacle in the way of practical quantum computing is achieving scalable and robust high-fidelity entangling gates. To this end, quantum control has become an essential tool, as it can make the entangling interaction resilient to sources of noise. Nevertheless, it may be difficult to identify an appropriate quantum control technique for a particular need given the breadth of work pertaining to robust entanglement. To this end, we attempt to consolidate the literature by providing a non-exhaustive summary and critical analysis. The quantum control methods are separated into two categories: schemes which extend the robustness to (i) spin or (ii) motional decoherence. We choose to focus on extensions of the σx ⊗ σx Mølmer-Sørensen interaction using microwaves and a static magnetic field gradient. Nevertheless, some of the techniques discussed here can be relevant to other trapped ion architectures or physical qubit implementations. Finally, we experimentally realize a proof-of-concept interaction with simultaneous robustness to spin and motional decoherence by combining several quantum control methods presented in this manuscript

    Blueprint for a microwave trapped ion quantum computer

    Get PDF
    The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion–based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation–based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error–threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects

    Functional colour genes and signals of selection in colour polymorphic salamanders

    Get PDF
    Coloration has been associated with multiple biologically relevant traits that drive adaptation and diversification in many taxa. However, despite the great diversity of colour patterns present in amphibians the underlying molecular basis is largely unknown. Here, we use insight from a highly colour-variable lineage of the European fire salamander (Salamandra salamandra bernardezi) to identify functional associations with striking variation in colour morph and pattern. The three focal colour morphs—ancestral black-yellow striped, fully yellow and fully brown—differed in pattern, visible coloration and cellular composition. From population genomic analyses of up to 4,702 loci, we found no correlations of neutral population genetic structure with colour morph. However, we identified 21 loci with genotype–phenotype associations, several of which relate to known colour genes. Furthermore, we inferred response to selection at up to 142 loci between the colour morphs, again including several that relate to coloration genes. By transcriptomic analysis across all different combinations, we found 196 differentially expressed genes between yellow, brown and black skin, 63 of which are candidate genes involved in animal coloration. The concordance across different statistical approaches and ‘omic data sets provide several lines of evidence for loci linked to functional differences between colour morphs, including TYR, CAMK1 and PMEL. We found little association between colour morph and the metabolomic profile of its toxic compounds from the skin secretions. Our research suggests that current ecological and evolutionary hypotheses for the origins and maintenance of these striking colour morphs may need to be revisited.This research was supported by a Natural Environment Research Council; a Royal Society Research Grant; a Glasgow Natural History Society grant; a Wellcome Trust ISSF Catalyst Grant and a Spanish Ministry of Science Grant

    Fabrication of surface ion traps with integrated current carrying wires enabling high magnetic field gradients

    Get PDF
    A major challenge for quantum computers is the scalable simultaneous execution of quantum gates. One approach to address this in trapped ion quantum computers is the implementation of quantum gates based on static magnetic field gradients and global microwave fields. In this paper, we present the fabrication of surface ion traps with integrated copper current carrying wires embedded inside the substrate below the ion trap electrodes, capable of generating high magnetic field gradients. The copper layer's measured sheet resistance of 1.12 mΩ/sq at room temperature is sufficiently low to incorporate complex designs, without excessive power dissipation at high currents causing a thermal runaway. At a temperature of 40 K the sheet resistance drops to 20.9 μΩ/sq giving a lower limit for the residual resistance ratio of 100. Continuous currents of 13 A can be applied, resulting in a simulated magnetic field gradient of 144 T m−1 at the ion position, which is 125 μm from the trap surface for the particular anti-parallel wire pair in our design
    corecore