2,194 research outputs found

    Possibilities for Measurement and Compensation of Stray DC Electric Fields Acting on Drag-Free Test Masses

    Full text link
    DC electric fields can combine with test mass charging and thermal dielectric voltage noise to create significant force noise acting on the drag-free test masses in the LISA (Laser Interferometer Space Antenna) gravitational wave mission. This paper proposes a simple technique to measure and compensate average stray DC potentials at the mV level, yielding substantial reduction in this source of force noise. We discuss the attainable resolution for both flight and ground based experiments.Comment: To be published in Advances in Space Research, COSPAR 2002 conference proceedings (6 pages, 3 figures

    Gas damping force noise on a macroscopic test body in an infinite gas reservoir

    Full text link
    We present a simple analysis of the force noise associated with the mechanical damping of the motion of a test body surrounded by a large volume of rarefied gas. The calculation is performed considering the momentum imparted by inelastic collisions against the sides of a cubic test mass, and for other geometries for which the force noise could be an experimental limitation. In addition to arriving at an accurated estimate, by two alternative methods, we discuss the limits of the applicability of this analysis to realistic experimental configurations in which a test body is surrounded by residual gas inside an enclosure that is only slightly larger than the test body itself.Comment: 8 pages. updated with correct translational damping coefficient for cylinder on axis. added cylinder orthogonal to symmetry axis, force and torque. slightly edited throughou

    Comparison of advanced gravitational-wave detectors

    Get PDF
    We compare two advanced designs for gravitational-wave antennas in terms of their ability to detect two possible gravitational wave sources. Spherical, resonant mass antennas and interferometers incorporating resonant sideband extraction (RSE) were modeled using experimentally measurable parameters. The signal-to-noise ratio of each detector for a binary neutron star system and a rapidly rotating stellar core were calculated. For a range of plausible parameters we found that the advanced LIGO interferometer incorporating RSE gave higher signal-to-noise ratios than a spherical detector resonant at the same frequency for both sources. Spheres were found to be sensitive to these sources at distances beyond our galaxy. Interferometers were sensitive to these sources at far enough distances that several events per year would be expected

    Geometry and material effects in Casimir physics - Scattering theory

    Full text link
    We give a comprehensive presentation of methods for calculating the Casimir force to arbitrary accuracy, for any number of objects, arbitrary shapes, susceptibility functions, and separations. The technique is applicable to objects immersed in media other than vacuum, to nonzero temperatures, and to spatial arrangements in which one object is enclosed in another. Our method combines each object's classical electromagnetic scattering amplitude with universal translation matrices, which convert between the bases used to calculate scattering for each object, but are otherwise independent of the details of the individual objects. This approach, which combines methods of statistical physics and scattering theory, is well suited to analyze many diverse phenomena. We illustrate its power and versatility by a number of examples, which show how the interplay of geometry and material properties helps to understand and control Casimir forces. We also examine whether electrodynamic Casimir forces can lead to stable levitation. Neglecting permeabilities, we prove that any equilibrium position of objects subject to such forces is unstable if the permittivities of all objects are higher or lower than that of the enveloping medium; the former being the generic case for ordinary materials in vacuum.Comment: 44 pages, 11 figures, to appear in upcoming Lecture Notes in Physics volume in Casimir physic

    Stem cell factor receptor (c-KIT) codon 816 mutations predict development of bilateral testicular germ-cell tumors

    Get PDF
    Testicular germ-cell tumors (TGCTs) of adolescents and adults originate from intratubular germ cell neoplasia (ITGCN), which is composed of the malignant counterparts of embryonal germ cells. ITGCN cells are characterized, among others, by the presence of stem cell factor receptor c-KIT. Once established, ITGCN will always progress to invasiveness. Approximately 2.5-5% of patients with a TGCT will develop bilateral disease and require complete castration, resulting in infertility, a need for lifelong androgen replacement, and psychological stress. To date, the only way to predict a contralateral tumor is surgical biopsy of the contralateral testis to demonstrate ITGCN. We did a retrospective study of 224 unilateral and 61 proven bilateral TGCTs (from 46 patients, in three independently collected series in Europe) for the presence of activating c-KIT codon 816 mutations. A c-KIT codon 816 mutation was found in three unilateral TGCT (1.3%), and in 57 bilateral TGCTs (93%; P < 0.0001). In the two wild-type bilateral tumors for which ITGCN was available, the preinvasive cells contained the mutation. The mutations were somatic in origin and identical in both tumors. We conclude that somatic activating codon 816 c-KIT mutations are associated with development of bilateral TGCT. Detection of c-KIT codon 816 mutations in unilateral TGCT identifies patients at risk for bilateral disease. These patients may undergo tailored treatment to prevent the development of bilateral disease, with retention of testicular hormonal function

    Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results

    Get PDF
    We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 ± 0.1 fm s−2/√Hz or (0.54 ± 0.01) × 10−15 g/√Hz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 ± 0.3) fm/√Hz, about 2 orders of magnitude better than requirements. At f ≀ 0.5 mHz we observe a low-frequency tail that stays below 12 fm s−2/√Hz down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA

    Measurement of the W+W-gamma Cross Section and Direct Limits on Anomalous Quartic Gauge Boson Couplings at LEP

    Get PDF
    The process e+e- -> W+W-gamma is analysed using the data collected with the L3 detector at LEP at a centre-of-mass energy of 188.6GeV, corresponding to an integrated luminosity of 176.8pb^-1. Based on a sample of 42 selected W+W- candidates containing an isolated hard photon, the W+W-gamma cross section, defined within phase-space cuts, is measured to be: sigma_WWgamma = 290 +/- 80 +/- 16 fb, consistent with the Standard Model expectation. Including the process e+e- -> nu nu gamma gamma, limits are derived on anomalous contributions to the Standard Model quartic vertices W+W- gamma gamma and W+W-Z gamma at 95% CL: -0.043 GeV^-2 < a_0/Lambda^2 < 0.043 GeV^-2 0.08 GeV^-2 < a_c/Lambda^2 < 0.13 GeV^-2 0.41 GeV^-2 < a_n/Lambda^2 < 0.37 GeV^-2
    • 

    corecore