442 research outputs found

    Characterizing the Near-infrared Spectra of Flares from TRAPPIST-1 During JWST Transit Spectroscopy Observations

    Full text link
    We present the first analysis of JWST near-infrared spectroscopy of stellar flares from TRAPPIST-1 during transits of rocky exoplanets. Four flares were observed from 0.6--2.8 μ\mum with NIRISS and 0.6--3.5 μ\mum with NIRSpec during transits of TRAPPIST-1b, f, and g. We discover Pα\alpha and Brβ\beta line emission and characterize flare continuum at wavelengths from 1--3.5 μ\mum for the first time. Observed lines include Hα\alpha, Pα\alpha-Pϵ\epsilon, Brβ\beta, He I λ\lambda0.7062μ\mum, two Ca II infrared triplet (IRT) lines, and the He I IRT. We observe a reversed Paschen decrement from Pα\alpha-Pγ\gamma alongside changes in the light curve shapes of these lines. The continuum of all four flares is well-described by blackbody emission with an effective temperature below 5300 K, lower than temperatures typically observed at optical wavelengths. The 0.6--1 μ\mum spectra were convolved with the TESS response, enabling us to measure the flare rate of TRAPPIST-1 in the TESS bandpass. We find flares of 1030^{30} erg large enough to impact transit spectra occur at a rate of 3.6+2.11.3\substack{+2.1 \\ -1.3} flare d1^{-1}, \sim10×\times higher than previous predictions from K2. We measure the amount of flare contamination at 2 μ\mum for the TRAPPIST-1b and f transits to be 500±\pm450 and 2100±\pm400 ppm, respectively. We find up to 80% of flare contamination can be removed, with mitigation most effective from 1.0--2.4 μ\mum. These results suggest transits affected by flares may still be useful for atmospheric characterization efforts.Comment: 29 pages, 17 figures, 3 tables, accepted to The Astrophysical Journa

    Study of the BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1MeV,m(Ξc(2939)0)=2938.5±0.9±2.3MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0Λc+K\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7σ3.7\,\sigma. The relative branching fraction of BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the BD+DKB^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D)B(BˉDτνˉτ)/B(BˉDμνˉμ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)B(BD0τνˉτ)/B(BD0μνˉμ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τμντνˉμ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Fc Effector Function Contributes to the Activity of Human Anti-CTLA-4 Antibodies.

    Get PDF
    With the use of a mouse model expressing human Fc-gamma receptors (FcγRs), we demonstrated that antibodies with isotypes equivalent to ipilimumab and tremelimumab mediate intra-tumoral regulatory T (Treg) cell depletion in vivo, increasing the CD8+ to Treg cell ratio and promoting tumor rejection. Antibodies with improved FcγR binding profiles drove superior anti-tumor responses and survival. In patients with advanced melanoma, response to ipilimumab was associated with the CD16a-V158F high affinity polymorphism. Such activity only appeared relevant in the context of inflamed tumors, explaining the modest response rates observed in the clinical setting. Our data suggest that the activity of anti-CTLA-4 in inflamed tumors may be improved through enhancement of FcγR binding, whereas poorly infiltrated tumors will likely require combination approaches

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Measurement of the Ωc0 baryon lifetime with LHCb

    No full text
    The results of the measurement of the Ωc0 charmed baryon lifetime via the Ωb → Ωc0π decay mode are presented in this thesis. The result makes use of the proton-proton collision data collected by the LHCb detector at CERN in the years 2011-2012 and 2015-2016 using the full 8.7 fb⁻¹ total integrated luminosity data. The lifetime of the Ωc0 baryon was measured to be τΩc0 = 238 ± 33 (stat) ± 21 (syst) ± 1 (τD⁰) fs, where the first uncertainty is statistical, the second systematic, and the third due to the use of the world-average D⁰ lifetime. The lifetime is measured as a ratio of Ωb → Ωc0π to B → D⁰π decays in order to cancel out the decay time dependent reconstruction and selection efficiencies, using 284 Ωc0 and 55317 D⁰ candidates. The measurement agrees with the previous LHCb measurement in 2016 [1], at -0.63σ from the measurement, using data collected in 2011-2012 of τΩc0 = 268 ± 24 ± 10 fs, which reorders the hierarchy of the charmed baryon lifetimes predicted in the heavy quark effective theory

    Characterizing the Near-infrared Spectra of Flares from TRAPPIST-1 during JWST Transit Spectroscopy Observations

    No full text
    We present the first analysis of JWST near-infrared spectroscopy of stellar flares from TRAPPIST-1 during transits of rocky exoplanets. Four flares were observed from 0.6–2.8 μ m with the Near Infrared Imager and Slitless Spectrograph and 0.6–3.5 μ m with the Near Infrared Spectrograph during transits of TRAPPIST-1b, f, and g. We discover P α and Br β line emission and characterize flare continuum at wavelengths from 1–3.5 μ m for the first time. Observed lines include H α , P α –P ϵ , Br β , He i λ 0.7062 μ m, two Ca ii infrared triplet (IRT) lines, and the He i IRT. We observe a reversed Paschen decrement from P α –P γ alongside changes in the light-curve shapes of these lines. The continuum of all four flares is well described by blackbody emission with an effective temperature below 5300 K, lower than the temperatures typically observed at optical wavelengths. The 0.6–1 μ m spectra were convolved with the Transiting Exoplanet Survey Satellite (TESS) response, enabling us to measure the flare rate of TRAPPIST-1 in the TESS bandpass. We find flares of 10 ^30 erg, large enough to impact transit spectra occur at a rate of 3.61.3+2.1{3.6}_{-1.3}^{+2.1} flare day ^−1 , ∼10× higher than previous predictions from K2. We measure the amount of flare contamination at 2 μ m for the TRAPPIST-1b and f transits to be 500 ± 450 and 2100 ± 400 ppm, respectively. We find up to 80% of flare contamination can be removed, with mitigation most effective from 1.0–2.4 μ m. These results suggest transits affected by flares may still be useful for atmospheric characterization efforts

    First measurement of the Zμ+μZ\rightarrow \mu^+ \mu^- angular coefficients in the forward region of pppp collisions at s=13\sqrt{s}=13 TeV

    No full text
    The first study of the angular distribution of μ+μ\mu^+ \mu^- pairs produced in the forward rapidity region via the Drell-Yan reaction ppγ/Z+Xl+l+Xpp \rightarrow \gamma^{*}/Z +X \rightarrow l^+ l^- + X is presented, using data collected with the LHCb detector at a centre-of-mass energy of 13TeV, corresponding to an integrated luminosity of 5.1 fb1\rm{fb}^{-1}. The coefficients of the five leading terms in the angular distribution are determined as a function of the dimuon transverse momentum and rapidity. The results are compared to various theoretical predictions of the ZZ-boson production mechanism and can also be used to probe transverse-momentum-dependent parton distributions within the proton
    corecore