467 research outputs found

    Strain-engineered diffusive atomic switching in two-dimensional crystals

    Get PDF
    Strain engineering is an emerging route for tuning the bandgap, carrier mobility, chemical reactivity and diffusivity of materials. Here we show how strain can be used to control atomic diffusion in van der Waals heterostructures of two-dimensional (2D) crystals. We use strain to increase the diffusivity of Ge and Te atoms that are confined to 5 Å thick 2D planes within an Sb[subscript 2]Te[subscript 3]–GeTe van der Waals superlattice. The number of quintuple Sb[subscript 2]Te[subscript 3] 2D crystal layers dictates the strain in the GeTe layers and consequently its diffusive atomic disordering. By identifying four critical rules for the superlattice configuration we lay the foundation for a generalizable approach to the design of switchable van der Waals heterostructures. As Sb[subscript 2]Te[subscript 3]–GeTe is a topological insulator, we envision these rules enabling methods to control spin and topological properties of materials in reversible and energy efficient ways.National Science Foundation (U.S.) (DMR-1410636 and DMR-1120901)SUTD-MIT International Design Centre (IDC) (Postdoctoral Fellowship)SUTD–MIT International Design Center (IDC) (Designer Chalcogenides IDSF1200108OH Research Project

    Wolfram Syndrome protein, Miner1, regulates sulphydryl redox status, the unfolded protein response, and Ca2+ homeostasis.

    Get PDF
    Miner1 is a redox-active 2Fe2S cluster protein. Mutations in Miner1 result in Wolfram Syndrome, a metabolic disease associated with diabetes, blindness, deafness, and a shortened lifespan. Embryonic fibroblasts from Miner1(-/-) mice displayed ER stress and showed hallmarks of the unfolded protein response. In addition, loss of Miner1 caused a depletion of ER Ca(2+) stores, a dramatic increase in mitochondrial Ca(2+) load, increased reactive oxygen and nitrogen species, an increase in the GSSG/GSH and NAD(+)/NADH ratios, and an increase in the ADP/ATP ratio consistent with enhanced ATP utilization. Furthermore, mitochondria in fibroblasts lacking Miner1 displayed ultrastructural alterations, such as increased cristae density and punctate morphology, and an increase in O2 consumption. Treatment with the sulphydryl anti-oxidant N-acetylcysteine reversed the abnormalities in the Miner1 deficient cells, suggesting that sulphydryl reducing agents should be explored as a treatment for this rare genetic disease

    Collisional N-Body Dynamics Coupled to Self-Gravitating Magnetohydrodynamics Reveals Dynamical Binary Formation

    Get PDF
    We describe a star cluster formation model that includes individual star formation from self-gravitating, magnetized gas, coupled to collisional stellar dynamics. The model uses the Astrophysical Multi-purpose Software Environment (AMUSE) to integrate an adaptive-mesh magnetohydrodynamics code (FLASH) with a fourth order Hermite N-body code (ph4), a stellar evolution code (SeBa), and a method for resolving binary evolution (multiples). This combination yields unique star formation simulations that allow us to study binaries formed dynamically from interactions with both other stars and dense, magnetized gas subject to stellar feedback during the birth and early evolution of stellar clusters. We find that for massive stars, our simulations are consistent with the observed dynamical binary fractions and mass ratios. However, our binary fraction drops well below observed values for lower mass stars, presumably due to unincluded binary formation during initial star formation. Further, we observe a build up of binaries near the hard-soft boundary that may be an important mechanism driving early cluster contraction.Comment: 14 pages, 12 figures. Submitted to Ap

    Modelling of the Effects of Stellar Feedback during Star Cluster Formation Using a Hybrid Gas and N-Body Method

    Full text link
    Understanding the formation of stellar clusters requires following the interplay between gas and newly formed stars accurately. We therefore couple the magnetohydrodynamics code FLASH to the N-body code ph4 and the stellar evolution code SeBa using the Astrophysical Multipurpose Software Environment (AMUSE) to model stellar dynamics, evolution, and collisional N-body dynamics and the formation of binary and higher-order multiple systems, while implementing stellar feedback in the form of radiation, stellar winds and supernovae in FLASH. We here describe the algorithms used for each of these processes. We denote this integrated package Torch. We then use this novel numerical method to simulate the formation and early evolution of several examples of open clusters of ~1000 stars formed from clouds with a mass range of 10^3-10^5 M_sun. Analyzing the effects of stellar feedback on the gas and stars of the natal clusters, we find that in these examples, the stellar clusters are resilient to disruption, even in the presence of intense feedback. This can even slightly increase the amount of dense, Jeans unstable gas by sweeping up shells; thus, a stellar wind strong enough to trap its own H II region shows modest triggering of star formation. Our clusters are born moderately mass segregated, an effect enhanced by feedback, and retained after the ejection of their natal gas, in agreement with observations.Comment: Accepted to ApJ. 29 pages, 18 figures. Source code at https://bitbucket.org/torch-sf/torch/ and documentation at https://torch-sf.bitbucket.io

    Clean birth and postnatal care practices to reduce neonatal deaths from sepsis and tetanus: a systematic review and Delphi estimation of mortality effect

    Get PDF
    BACKGROUND: Annually over 520,000 newborns die from neonatal sepsis, and 60,000 more from tetanus. Estimates of the effect of clean birth and postnatal care practices are required for evidence-based program planning. OBJECTIVE: To review the evidence for clean birth and postnatal care practices and estimate the effect on neonatal mortality from sepsis and tetanus for the Lives Saved Tool (LiST). METHODS: We conducted a systematic review of multiple databases. Data were abstracted into standard tables and assessed by GRADE criteria. Where appropriate, meta-analyses were undertaken. For interventions with low quality evidence but a strong GRADE recommendation, a Delphi process was conducted. RESULTS: Low quality evidence supports a reduction in all-cause neonatal mortality (19% (95% c.i. 1-34%)), cord infection (30% (95% c.i. 20-39%)) and neonatal tetanus (49% (95% c.i. 35-62%)) with birth attendant handwashing. Very low quality evidence supports a reduction in neonatal tetanus mortality with a clean birth surface (93% (95% c.i. 77-100%)) and no relationship between a clean perineum and tetanus. Low quality evidence supports a reduction of neonatal tetanus with facility birth (68% (95% c.i. 47-88%). No relationship was found between birth place and cord infections or sepsis mortality. For postnatal clean practices, all-cause mortality is reduced with chlorhexidine cord applications in the first 24 hours of life (34% (95% c.i. 5-54%, moderate quality evidence) and antimicrobial cord applications (63% (95% c.i. 41-86%, low quality evidence). One study of postnatal maternal handwashing reported reductions in all-cause mortality (44% (95% c.i. 18-62%)) and cord infection ((24% (95% c.i. 5-40%)).Given the low quality of evidence, a Delphi expert opinion process was undertaken. Thirty experts reached consensus regarding reduction of neonatal sepsis deaths by clean birth practices at home (15% (IQR 10-20)) or in a facility (27% IQR 24-36)), and by clean postnatal care practices (40% (IQR 25-50)). The panel estimated that neonatal tetanus mortality was reduced by clean birth practices at home (30% (IQR(20-30)), or in a facility (38% (IQR 34-40)), and by clean postnatal care practices (40% (IQR 30-50)). CONCLUSION: According to expert opinion, clean birth and particularly postnatal care practices are effective in reducing neonatal mortality from sepsis and tetanus. Further research is required regarding optimal implementation strategies

    A decision support system for strategic maintenance planning in offshore wind farms

    Get PDF
    This paper presents a Decision Support System (DSS) for maintenance cost optimisation at an Offshore Wind Farm (OWF). The DSS is designed for use by multiple stakeholders in the OWF sector with the overall goal of informing maintenance strategy and hence reducing overall lifecycle maintenance costs at the OWF. Two optimisation models underpin the DSS. The first is a deterministic model that is intended for use by stakeholders with access to accurate failure rate data. The second is a stochastic model that is intended for use by stakeholders who have less certainty about failure rates. Solutions of both models are presented using a UK OWF that is in construction as an example. Conclusions as to the value of failure rate data are drawn by comparing the results of the two models. Sensitivity analysis is undertaken with respect to the turbine failure rate frequency and number of turbines at the site, with near linear trends observed for both factors. Finally, overall conclusions are drawn in the context of maintenance planning in the OWF sector

    Implementing Primordial Binaries in Simulations of Star Cluster Formation with a Hybrid MHD and Direct N-Body Method

    Full text link
    The fraction of stars in binary systems within star clusters is important for their evolution, but what proportion of binaries form by dynamical processes after initial stellar accretion remains unknown. In previous work, we showed that dynamical interactions alone produced too few low-mass binaries compared to observations. We therefore implement an initial population of binaries in the coupled MHD and direct N-body star cluster formation code Torch. We compare simulations with, and without, initial binary populations and follow the dynamical evolution of the binary population in both sets of simulations, finding that both dynamical formation and destruction of binaries take place. Even in the first few million years of star formation, we find that an initial population of binaries is needed at all masses to reproduce observed binary fractions for binaries with mass ratios above the q≥0.1q \geq 0.1 detection limit. Our simulations also indicate that dynamical interactions in the presence of gas during cluster formation modify the initial distributions towards binaries with smaller primary masses, larger mass ratios, smaller semi-major axes and larger eccentricities. Systems formed dynamically do not have the same properties as the initial systems, and systems formed dynamically in the presence of an initial population of binaries differ from those formed in simulations with single stars only. Dynamical interactions during the earliest stages of star cluster formation are important for determining the properties of binary star systems.Comment: 15 pages, 14 figures, submitted to MNRAS and edited to address positive referee's repor

    Multipoint Schur algorithm and orthogonal rational functions: convergence properties, I

    Full text link
    Classical Schur analysis is intimately connected to the theory of orthogonal polynomials on the circle [Simon, 2005]. We investigate here the connection between multipoint Schur analysis and orthogonal rational functions. Specifically, we study the convergence of the Wall rational functions via the development of a rational analogue to the Szeg\H o theory, in the case where the interpolation points may accumulate on the unit circle. This leads us to generalize results from [Khrushchev,2001], [Bultheel et al., 1999], and yields asymptotics of a novel type.Comment: a preliminary version, 39 pages; some changes in the Introduction, Section 5 (Szeg\H o type asymptotics) is extende
    • …
    corecore