1,042 research outputs found

    Threats on the horizon: Understanding security threats in the era of cyber-physical systems

    Get PDF
    Disruptive innovations of the last few decades, such as smart cities and Industry 4.0, were made possible by higher integration of physical and digital elements. In today's pervasive cyber-physical systems, connecting more devices introduces new vulnerabilities and security threats. With increasing cybersecurity incidents, cybersecurity professionals are becoming incapable of addressing what has become the greatest threat climate than ever before. This research investigates the spectrum of risk of a cybersecurity incident taking place in the cyber-physical-enabled world using the VERIS Community Database. The findings were that the majority of known actors were from the US and Russia, most victims were from western states and geographic origin tended to reflect global affairs. The most commonly targeted asset was information, with the majority of attack modes relying on privilege abuse. The key feature observed was extensive internal security breaches, most often a result of human error. This tends to show that access in any form appears to be the source of vulnerability rather than incident specifics due to a fundamental trade-off between usability and security in the design of computer systems. This provides fundamental evidence of the need for a major reevaluation of the founding principles in cybersecurity

    Occurrence and diversity of Xanthomonas campestris pv. campestris in vegetable brassica fields in Nepal

    Get PDF
    Black rot caused by Xanthomonas campestris pv. campestris was found in 28 sampled cabbage fields in five major cabbage-growing districts in Nepal in 2001 and in four cauliflower fields in two districts and a leaf mustard seed bed in 2003. Pathogenic X. campestris pv. campestris strains were obtained from 39 cabbage plants, 4 cauliflower plants, and 1 leaf mustard plant with typical lesions. Repetitive DNA polymerase chain reaction-based fingerprinting (rep-PCR) using repetitive extragenic palindromic, enterobacterial repetitive intergenic consensus, and BOX primers was used to assess the genetic diversity. Strains were also race typed using a differential series of Brassica spp. Cabbage strains belonged to five races (races 1, 4, 5, 6, and 7), with races 4, 1, and 6 the most common. All cauliflower strains were race 4 and the leaf mustard strain was race 6. A dendrogram derived from the combined rep-PCR profiles showed that the Nepalese X. campestris pv. campestris strains clustered separately from other Xanthomonas spp. and pathovars. Race 1 strains clustered together and strains of races 4, 5, and 6 were each split into at least two clusters. The presence of different races and the genetic variability of the pathogen should be considered when resistant cultivars are bred and introduced into regions in Nepal to control black rot of brassicas

    A mathematical investigation into the uptake kinetics of nanoparticles in vitro.

    Get PDF
    Nanoparticles have the potential to increase the efficacy of anticancer drugs whilst reducing off-target side effects. However, there remain uncertainties regarding the cellular uptake kinetics of nanoparticles which could have implications for nanoparticle design and delivery. Polymersomes are nanoparticle candidates for cancer therapy which encapsulate chemotherapy drugs. Here we develop a mathematical model to simulate the uptake of polymersomes via endocytosis, a process by which polymersomes bind to the cell surface before becoming internalised by the cell where they then break down, releasing their contents which could include chemotherapy drugs. We focus on two in vitro configurations relevant to the testing and development of cancer therapies: a well-mixed culture model and a tumour spheroid setup. Our mathematical model of the well-mixed culture model comprises a set of coupled ordinary differential equations for the unbound and bound polymersomes and associated binding dynamics. Using a singular perturbation analysis we identify an optimal number of ligands on the polymersome surface which maximises internalised polymersomes and thus intracellular chemotherapy drug concentration. In our mathematical model of the spheroid, a multiphase system of partial differential equations is developed to describe the spatial and temporal distribution of bound and unbound polymersomes via advection and diffusion, alongside oxygen, tumour growth, cell proliferation and viability. Consistent with experimental observations, the model predicts the evolution of oxygen gradients leading to a necrotic core. We investigate the impact of two different internalisation functions on spheroid growth, a constant and a bond dependent function. It was found that the constant function yields faster uptake and therefore chemotherapy delivery. We also show how various parameters, such as spheroid permeability, lead to travelling wave or steady-state solutions

    Efficiency and safety of varying the frequency of whole blood donation (INTERVAL): a randomised trial of 45 000 donors

    Get PDF
    Background: Limits on the frequency of whole blood donation exist primarily to safeguard donor health. However, there is substantial variation across blood services in the maximum frequency of donations allowed. We compared standard practice in the UK with shorter inter-donation intervals used in other countries. Methods: In this parallel group, pragmatic, randomised trial, we recruited whole blood donors aged 18 years or older from 25 centres across England, UK. By use of a computer-based algorithm, men were randomly assigned (1:1:1) to 12-week (standard) versus 10-week versus 8-week inter-donation intervals, and women were randomly assigned (1:1:1) to 16-week (standard) versus 14-week versus 12-week intervals. Participants were not masked to their allocated intervention group. The primary outcome was the number of donations over 2 years. Secondary outcomes related to safety were quality of life, symptoms potentially related to donation, physical activity, cognitive function, haemoglobin and ferritin concentrations, and deferrals because of low haemoglobin. This trial is registered with ISRCTN, number ISRCTN24760606, and is ongoing but no longer recruiting participants. Findings: 45 263 whole blood donors (22 466 men, 22 797 women) were recruited between June 11, 2012, and June 15, 2014. Data were analysed for 45 042 (99·5%) participants. Men were randomly assigned to the 12-week (n=7452) versus 10-week (n=7449) versus 8-week (n=7456) groups; and women to the 16-week (n=7550) versus 14-week (n=7567) versus 12-week (n=7568) groups. In men, compared with the 12-week group, the mean amount of blood collected per donor over 2 years increased by 1·69 units (95% CI 1·59–1·80; approximately 795 mL) in the 8-week group and by 0·79 units (0·69–0·88; approximately 370 mL) in the 10-week group (p<0·0001 for both). In women, compared with the 16-week group, it increased by 0·84 units (95% CI 0·76–0·91; approximately 395 mL) in the 12-week group and by 0·46 units (0·39–0·53; approximately 215 mL) in the 14-week group (p<0·0001 for both). No significant differences were observed in quality of life, physical activity, or cognitive function across randomised groups. However, more frequent donation resulted in more donation-related symptoms (eg, tiredness, breathlessness, feeling faint, dizziness, and restless legs, especially among men [for all listed symptoms]), lower mean haemoglobin and ferritin concentrations, and more deferrals for low haemoglobin (p<0·0001 for each) than those observed in the standard frequency groups. Interpretation: Over 2 years, more frequent donation than is standard practice in the UK collected substantially more blood without having a major effect on donors' quality of life, physical activity, or cognitive function, but resulted in more donation-related symptoms, deferrals, and iron deficiency. Funding: NHS Blood and Transplant, National Institute for Health Research, UK Medical Research Council, and British Heart Foundation

    Comparison of four methods to measure haemoglobin concentrations in whole blood donors (COMPARE): A diagnostic accuracy study.

    Get PDF
    OBJECTIVE: To compare four haemoglobin measurement methods in whole blood donors. BACKGROUND: To safeguard donors, blood services measure haemoglobin concentration in advance of each donation. NHS Blood and Transplant's (NHSBT) customary method have been capillary gravimetry (copper sulphate), followed by venous spectrophotometry (HemoCue) for donors failing gravimetry. However, NHSBT's customary method results in 10% of donors being inappropriately bled (ie, with haemoglobin values below the regulatory threshold). METHODS: We compared the following four methods in 21 840 blood donors (aged ≥18 years) recruited from 10 NHSBT centres in England, with the Sysmex XN-2000 haematology analyser, the reference standard: (1) NHSBT's customary method; (2) "post donation" approach, that is, estimating current haemoglobin concentration from that measured by a haematology analyser at a donor's most recent prior donation; (3) "portable haemoglobinometry" (using capillary HemoCue); (4) non-invasive spectrometry (using MBR Haemospect or Orsense NMB200). We assessed sensitivity; specificity; proportion who would have been inappropriately bled, or rejected from donation ("deferred") incorrectly; and test preference. RESULTS: Compared with the reference standard, the methods ranged in test sensitivity from 17.0% (MBR Haemospect) to 79.0% (portable haemoglobinometry) in men, and from 19.0% (MBR Haemospect) to 82.8% (portable haemoglobinometry) in women. For specificity, the methods ranged from 87.2% (MBR Haemospect) to 99.9% (NHSBT's customary method) in men, and from 74.1% (Orsense NMB200) to 99.8% (NHSBT's customary method) in women. The proportion of donors who would have been inappropriately bled ranged from 2.2% in men for portable haemoglobinometry to 18.9% in women for MBR Haemospect. The proportion of donors who would have been deferred incorrectly with haemoglobin concentration above the minimum threshold ranged from 0.1% in men for NHSBT's customary method to 20.3% in women for OrSense. Most donors preferred non-invasive spectrometry. CONCLUSION: In the largest study reporting head-to-head comparisons of four methods to measure haemoglobin prior to blood donation, our results support replacement of NHSBT's customary method with portable haemoglobinometry

    New fossil remains of Homo naledi from the Lesedi Chamber, South Africa

    Get PDF
    The Rising Star cave system has produced abundant fossil hominin remains within the Dinaledi Chamber, representing a minimum of 15 individuals attributed to Homo naledi. Further exploration led to the discovery of hominin material, now comprising 131 hominin specimens, within a second chamber, the Lesedi Chamber. The Lesedi Chamber is far separated from the Dinaledi Chamber within the Rising Star cave system, and represents a second depositional context for hominin remains. In each of three collection areas within the Lesedi Chamber, diagnostic skeletal material allows a clear attribution to H. naledi. Both adult and immature material is present. The hominin remains represent at least three individuals based upon duplication of elements, but more individuals are likely present based upon the spatial context. The most significant specimen is the near-complete cranium of a large individual, designated LES1, with an endocranial volume of approximately 610 ml and associated postcranial remains. The Lesedi Chamber skeletal sample extends our knowledge of the morphology and variation of H. naledi, and evidence of H. naledi from both recovery localities shows a consistent pattern of differentiation from other hominin species

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    • …
    corecore