1,352 research outputs found

    Body tides on an elliptical rotating earth

    Get PDF
    The complete tidal response of an elliptical, rotating, elastic Earth is found to contain small displacements which do not fit into the conventional Love number framework. Corresponding observable tidal quantities (gravity, tilt, strain, Eulerian potential, etc.) are modified by the addition of small latitude dependent terms

    Dealing with complexity in education for sustainability - a shared journey for students and teachers in design education

    Get PDF
    Design graduates must be capable of responding meaningfully to an increasingly complex world. Student learning must provide a holistic and collaborative design practice that is both flexible and creative and authentically incorporates complexity. Within this context it is critical that sustainability, in its broadest definition, is embedded into the curriculum. This enables students to explore sustainability, grapple with issues concerning the interconnectedness of social, economic and environmental considerations in the local and global context, and to better understand the implications of their own actions in the real world. Appropriate teaching strategies are needed to support such learning

    Three academics' narratives in transforming curriculum for education for sustainable development

    Get PDF
    The expectation is that higher education curricula which purports to incorporate education for sustainable development (ESD) supports university graduates in becoming more sustainable. It would then follow that if academics are to offer such curricula they need to be adequately equipped with the motivations, knowledge and skills to teach it. However, the extent to which ESD has resulted in genuine higher education curriculum change, and academic readiness for it, is debatable. As such, this article presents the academic experiences of three of the authors involved in a curriculum change process to embed ESD within a Bachelor of Arts (Textile Design) degree program. Individual post-project narratives of our experiences are summarised and thematically analysed. The analysis reveals these experiences as disorienting, yet subsequently transformative. The findings suggest promoting academics' transformative learning should be a focus of ESD curriculum change efforts. The findings support commitment to long-term, facilitated professional development to achieve transformative change; an often espoused, yet under-reported initiative

    Direct measurement of diurnal polar motion by ring laser gyroscopes

    Get PDF
    We report the first direct measurements of the very small effect of forced diurnal polar motion, successfully observed on three of our large ring lasers, which now measure the instantaneous direction of Earth's rotation axis to a precision of 1 part in 10^8 when averaged over a time interval of several hours. Ring laser gyroscopes provide a new viable technique for directly and continuously measuring the position of the instantaneous rotation axis of the Earth and the amplitudes of the Oppolzer modes. In contrast, the space geodetic techniques (VLBI, SLR, GPS, etc.) contain no information about the position of the instantaneous axis of rotation of the Earth, but are sensitive to the complete transformation matrix between the Earth-fixed and inertial reference frame. Further improvements of gyroscopes will provide a powerful new tool for studying the Earth's interior.Comment: 5 pages, 4 figures, agu2001.cl

    Contributions of GRACE to Climate Monitoring

    Get PDF
    The NASA/German Gravity Recovery and Climate Experiment (GRACE) was launched in March 2002. Rather than looking downward, GRACE continuously monitors the locations of and precise distance between twin satellites which orbit in tandem about 200 km apart. Variations in mass near Earth's surface cause heterogeneities in its gravity field, which in turn affect the orbits of satellites. Thus scientists can use GRACE data to map Earth's gravity field with enough accuracy to discern month to month changes caused by ocean circulation and redistribution of water stored on and in the land. Other gravitational influences, such as atmospheric circulation, post-glacial rebound, and solid earth movements are either independently determined and removed or are negligible on a monthly to sub-decadal timescale. Despite its coarse spatial (>150,000 sq km at mid-latitudes) and temporal (approx monthly) resolutions, GRACE has enabled significant advancements in the oceanic, hydrologic, and cryospheric science, and has great potential for climate monitoring, because it is the only global observing system able to measure ocean bottom pressures, total terrestrial water storage, and ice mass changes. The best known GRACE results are estimates of Greenland and Antarctic ice sheet loss rates. Previously, scientists had estimated ice mass losses using ground and satellite based altimetry and surface mass balance estimates based on snowfall accumulation and glacier discharge. While such measurements are still very useful for their spatial detail, they are imperfectly correlated with large-scale ice mass changes, due to snow and ice compaction and incomplete spatial coverage. GRACE enables scientists to generate monthly time series of Greenland and Antarctic ice mass, which have confirmed the shrinking of the polar ice sheets, one of the most obvious and indisputable manifestations of climate change. Further, GRACE has located and quantified hot spots of ice loss in southeastern Greenland and western Antarctica. For 2002 to present, the rate of ice mass loss has been 200 to 300 GT/yr in Greenland and 70 to 210 GT/yr in Antarctica, and some scientists are suggesting that the rates are accelerating. Similarly, GRACE has been used to monitor mass changes in alpine glaciers. Tamisiea et al. first characterized glacier melt along the southern coast of Alaska, more recently estimated to be occurring at a rate of 84 GT/yr. Chen et al. estimated that Patagonian glaciers are melting at a rate of 28 GT/yr, and estimated that the high mountains of central Asia lose ice at a rate of 47 GT/yr. Tapley et al. and Wahr et al. presented the first GRACE based estimates of changes in column-integrated terrestrial water storage (TWS; the sum of ground-water, soil moisture, surface waters, snow, ice, and water stored in vegetation) at continental scales. Since then, dozens of studies have shown that GRACE based estimates of regional to continental scale TWS variations agree with independent information, and some innovative uses of GRACE data have been developed. Rodell et al. (2004) and Swenson and Wahr (2006) demonstrated that by combining GRACE derived terrestrial water storage changes with observations of precipitation and runoff in a river basin scale water budget, it was possible to produce new estimates of evapotranspiration and atmospheric moisture convergence, essential climate variables that are difficult to estimate accurately. Similarly, GRACE has been used to constrain estimates of global river discharge and the contribution of changes in TWS to sea level rise. Crowley et al. observed a negative correlation between interannual TWS anomalies in the Amazon and the Congo River basin. Yeh et al. and Rodell et al. estimated regionally averaged groundwater storage variations based on GRACE and auxiliary observations. Rodell et al. and Tiwari et al. applied that method to quantify massive groundwater depletion in northern India caused by over reliance on aquifers for irration, and Famiglietti et al. found a similar situation in California's Central Valley. Zaitchik et al. and Lo et al. described approaches to use GRACE to constrain hydrological models, enabling integration of GRACE data with other observations and achieving much higher spatial and temporal resolutions than GRACE alone. Such approaches are now supporting applications including drought and water resources monitoring. Oceanography has likewise benefitted from the independent nature of GRACE observations. One application is measurement of the mass component of sea level rise, which complements radar altimetry and in situ measurements. GRACE also measures ocean bottom pressures (OBP), which help to refine understanding and modeling of ocean circulation and the ocean's fresh water budget, among other things. For example, Hayakawa et al. showed that GRACE observes OBP patterns absent from the background models of oceanic variability. Morison et al. used GRACE to describe important decadal scale shifts in circulation and an ongoing trend of freshening of the western Arctic, important indicators of climate variability. The research of Song and Zlotnicki and Chambers and Willis on GRACE-derived ocean bottom pressures in the sub-polar gyre led to the discovery of an ENSO teleconnection and a long-term change in OBP in the North Pacific sub-polar gyre that was not predicted by an ocean model. Further, Chambers and Willis were able to identify an internal redistribution of mass between Atlantic and Pacific Oceans lasting at least six years, which was not predicted by ocean models and was the first direct evidence of sustained mass transport from one ocean basin to another on periods longer than a year. Boening et al. observed a record increase in OBP over part of the southeastern Pacific in late 2009 and early 2010, primarily caused by wind stress curl associated with a strong and persistent anticyclone and likely related to the concurrent Central Pacific El Nino. GRACE has far surpassed its 5-year design lifetime, but it will likely succumb to the aging of batteries and instrument systems sometime in the next few years. NASA has begun initial development of a follow-on to GRACE with very similar design, which could launch as soon as 2016 and would provide continuity in the data record while improving resolution slightly. Higher resolution time variable gravity missions are also on the drawing board

    Embedded: The contribution of a facilitated action research curriculum change project to sustainability learning in an Australian university context

    Get PDF
    Sustainability-related curriculum change in higher education has been slow to progress despite high level calls for change. The lack of appropriate professional learning for academics is seen as a significant factor hampering curriculum change. This study identified, implemented and evaluated a professional learning model, the embedded model, to explore its contribution to supporting academics to bring about lasting and transformative sustainability-related curriculum change. The embedded model was informed by both sustainability learning and academic development literature. The model is characterised by a set of elements which are holistic, integrative and transformative. The model combines provision of facilitated professional learning within the context of whole-of-program curriculum change. The study used an action research methodology where a professional learning/curriculum change project using the embedded model was conducted over 3 plus years with the academics who teach into the Bachelor of Arts (Textile Design) at RMIT University, Melbourne, Australia. The study, therefore, considered the implementation of the embedded model in one program and disciplinary context. The study found sustainability was embedded in the curriculum, students had engaged in and achieved sustainability learning, and transformative change was identified amongst academics. The evaluated project showed successful outcomes on a range of measures, including achieving internal validity among participants. Academics developed changed understandings of their discipline and curriculum, such that these now incorporated sustainability, as well as changed learning and teaching practice. Moreover, academics developed their capacity for self-directed reflective practice and practice enhancement in relation to learning and teaching most likely as a result of their involvement in the project. The key factors supporting successful and transformative curriculum change were identified. They include: • Normalisation of critical reflection amongst the group of participants; • Development of a common language amongst the group which includes learning and teaching, sustainability and discipline (textile design) literacies; • Maintaining group motivation throughout the project by developing and strengthening mutually respectful collaborative relationships; • Responsive facilitation which is able to support and foster the development and maintenance of the above key success factors; •These success factors reflected the professional learning approach provided by the embedded model. Transferability of the embedded model to other contexts has not been attempted; however, this study suggests the model offers great possibility for supporting transformative sustainability related curriculum change in other higher education settings. This study demonstrates deeply embedded, transformative sustainability curriculum change is achievable within higher education program contexts

    BARRIERS FROM A SOCIO-TECHNICAL PERSPECTIVE TO IMPLEMENT DIGITALISATION IN INDUSTRIAL ENGINEERING PROCESSES - A LITERATURE REVIEW

    Get PDF
    With the paradigm shift towards Industry 4.0 and digitalisation, manufacturing engineers face several unexplored challenges; in the products for which they are designing production, in the equipment they are designing to realise production systems and in the digitalisation impact on engineering processes. Today\u27s manufacturing system design processes are still based on traditional engineering methods and have difficulties to cope with increased complexity. The aim of this systematic literature review is to explore drivers and barriers to implement digitalisation in engineering processes from a socio-technical perspective. The identified general barriers were cyber security, lack of competence, lack of standards, large investments and resistance to change. For the engineering processes the main drivers were increased product complexity, servitisation, data driven design and engineering productivity, with the main barriers culture, excess amount of data, integration of tools. cyber security and data quality. The study shows the complexity of the challenge, and that it is not only the technology that is the top barrier. Further research is recommended to develop approaches of successful engineering digitalisation implementations

    Alteration of the hypothalamic-pituitary-gonadal axis in estrogen- and androgen-treated adult male leopard frog, Rana pipiens

    Get PDF
    BACKGROUND: Gonadal steroids, in particular 5 alpha-dihydrotestosterone (DHT) and 17 beta-estradiol (E2), have been shown to feed back on the hypothalamic-pituitary-gonadal (HPG) axis of the ranid frog. However, questions still remain on how DHT and E2 impact two of the less-studied components of the ranid HPG axis, the hypothalamus and the gonad, and if the feedback effects are consistently negative. Thus, the goal of the study was to examine the effects of DHT and E2 upon the HPG axis of the gonadally-intact, sexually mature male leopard frogs, Rana pipiens. METHODS: R. pipiens were implanted with silastic capsules containing either cholesterol (Ch, a control), DHT, or E2 for 10 or 30 days. At each time point, steroid-induced changes in hypothalamic GnRH and pituitary LH concentrations, circulating luteinizing hormone (LH), and testicular histology were examined. RESULTS: Frogs implanted with DHT or E2 for 10 days did not show significant alterations in the HPG axis. In contrast, frogs implanted with hormones for 30 days had significantly lower circulating LH (for both DHT and E2), decreased pituitary LH concentration (for E2 only), and disrupted spermatogenesis (for both DHT and E2). The disruption of spermatogenesis was qualitatively similar between DHT and E2, although the effects of E2 were consistently more potent. In both DHT and E2-treated animals, a marked loss of all pre-meiotic germ cells was observed, although the loss of secondary spermatogonia appeared to be the primary cause of disrupted spermatogenesis. Unexpectedly, the presence of post-meiotic germ cells was either unaffected or enhanced by DHT or E2 treatment. CONCLUSIONS: Overall, these results showed that both DHT and E2 inhibited circulating LH and disrupted spermatogenesis progressively in a time-dependent manner, with the longer duration of treatment producing the more pronounced effects. Further, the feedback effects exerted by both steroid hormones upon the HPG axis were largely negative, although the possibility exists for a stimulatory effect upon the post-meiotic germ cells

    Ridge Formation and De-Spinning of Iapetus via an Impact-Generated Satellite

    Full text link
    We present a scenario for building the equatorial ridge and de-spinning Iapetus through an impact-generated disk and satellite. This impact puts debris into orbit, forming a ring inside the Roche limit and a satellite outside. This satellite rapidly pushes the ring material down to the surface of Iapetus, and then itself tidally evolves outward, thereby helping to de-spin Iapetus. This scenario can de-spin Iapetus an order of magnitude faster than when tides due to Saturn act alone, almost independently of its interior geophysical evolution. Eventually, the satellite is stripped from its orbit by Saturn. The range of satellite and impactor masses required is compatible with the estimated impact history of Iapetus.Comment: 19 pages, 3 figures; Icarus, in pres
    corecore