4,129 research outputs found

    Predicting success of range-expanding coral reef fish in temperate habitats using temperature-abundance relationships

    Full text link
    © 2018 Booth, Beretta, Brown and Figueira. An 18-year database of coral reef fish expatriation poleward in South East Australia was used to estimate persistence of coal reef fish recruits on temperate reefs. Surveys have identified over 150 coral reef fish species recruiting to temperate reefs at latitudes of 34°S (Sydney) and 60 species to 37°S (Merimbula) with 20 and 5 species respectively overwintering in at least 1 year over the study duration. We developed indices of vulnerability of key species to drops in water temperatures, by relating drops in abundances of species to temperature drops. Twenty species were ranked according to their temperature vulnerability. Overall, the families Chaetodontidae (butterflyfishes), Acanthuridae (surgeonfishes), Labridae (wrasses) and Pomacetnridae (damselfishes) had similar cold-water tolerance. However, there was considerable variability within families, for instance in the Pomacentridae, species from the genus Abudefduf appeared to have better cold-temperature tolerance than the other species. Predicted minimum overwintering temperature varied from 15.6°C to 19.8°C, with some species showing lower Tzero at Merimbula, the more poleward location. There was general concordance between a species' tolerance to cold-water and its tendency to occur as an overwinter but also notable exceptions. So while this work demonstrates the potential utility of tolerance to seasonal temperature drops as a means to predict range expansion capacity of vagrant species, the exceptional cases serve to highlight alternative factors. Specifically, tolerance to seasonal cooling of water is not the only important factor when predicting the range expansion capacity of a species. Factors affecting the general abundance of the vagrants, such as habitat suitability and competitor/predator environments will also be critical where overwinter survival becomes a lottery

    Blastomyces dermatitidis infections in the RSA

    Get PDF
    Twenty cases of blastomycosis have been confirmed in the RSA, 9 of which are presented for the first time. Patients came from all four provinces and the mean age was 40 years. Six cases were diagnosed between 1985 and 1987. Differences between strains of Blastomyces dermatitidis isolated in the RSA and in North America include morphological and cultural characteristics, mycelial-yeast conversion, antigenic structure, and .compatibility in cross-mating experiments. The diagnosis of this disease can be made by direct examination of unstained specimens, by histological examination or by culture of the organism. Culture should· be aUempted in all cases for confirmation of microscopic findings

    Cellular structure of qq-Brauer algebras

    Full text link
    In this paper we consider the qq-Brauer algebra over RR a commutative noetherian domain. We first construct a new basis for qq-Brauer algebras, and we then prove that it is a cell basis, and thus these algebras are cellular in the sense of Graham and Lehrer. In particular, they are shown to be an iterated inflation of Hecke algebras of type An1.A_{n-1}. Moreover, when RR is a field of arbitrary characteristic, we determine for which parameters the qq-Brauer algebras are quasi-heredity. So the general theory of cellular algebras and quasi-hereditary algebras applies to qq-Brauer algebras. As a consequence, we can determine all irreducible representations of qq-Brauer algebras by linear algebra methods

    Provo City Corp. v. Donna I. Knudsen : Brief of Respondent

    Get PDF
    Appeal from the Judgment of the Fourth District Court. The Honorable J. Robert Bullock

    Two-neutron knockout from neutron-deficient 34^{34}Ar, 30^{30}S, and 26^{26}Si

    Get PDF
    Two-neutron knockout reactions from nuclei in the proximity of the proton dripline have been studied using intermediate-energy beams of neutron-deficient 34^{34}Ar, 30^{30}S, and 26^{26}Si. The inclusive cross sections, and also the partial cross sections for the population of individual bound final states of the 32^{32}Ar, 28^{28}S and 24^{24}Si knockout residues, have been determined using the combination of particle and γ\gamma-ray spectroscopy. Similar to the two-proton knockout mechanism on the neutron-rich side of the nuclear chart, these two-neutron removal reactions from already neutron-deficient nuclei are also shown to be consistent with a direct reaction mechanism.Comment: Phys. Rev. C, rapid communication, in pres

    How large should whales be?

    Full text link
    The evolution and distribution of species body sizes for terrestrial mammals is well-explained by a macroevolutionary tradeoff between short-term selective advantages and long-term extinction risks from increased species body size, unfolding above the 2g minimum size induced by thermoregulation in air. Here, we consider whether this same tradeoff, formalized as a constrained convection-reaction-diffusion system, can also explain the sizes of fully aquatic mammals, which have not previously been considered. By replacing the terrestrial minimum with a pelagic one, at roughly 7000g, the terrestrial mammal tradeoff model accurately predicts, with no tunable parameters, the observed body masses of all extant cetacean species, including the 175,000,000g Blue Whale. This strong agreement between theory and data suggests that a universal macroevolutionary tradeoff governs body size evolution for all mammals, regardless of their habitat. The dramatic sizes of cetaceans can thus be attributed mainly to the increased convective heat loss is water, which shifts the species size distribution upward and pushes its right tail into ranges inaccessible to terrestrial mammals. Under this macroevolutionary tradeoff, the largest expected species occurs where the rate at which smaller-bodied species move up into large-bodied niches approximately equals the rate at which extinction removes them.Comment: 7 pages, 3 figures, 2 data table

    Phylogeography of Japanese encephalitis virus:genotype is associated with climate

    Get PDF
    The circulation of vector-borne zoonotic viruses is largely determined by the overlap in the geographical distributions of virus-competent vectors and reservoir hosts. What is less clear are the factors influencing the distribution of virus-specific lineages. Japanese encephalitis virus (JEV) is the most important etiologic agent of epidemic encephalitis worldwide, and is primarily maintained between vertebrate reservoir hosts (avian and swine) and culicine mosquitoes. There are five genotypes of JEV: GI-V. In recent years, GI has displaced GIII as the dominant JEV genotype and GV has re-emerged after almost 60 years of undetected virus circulation. JEV is found throughout most of Asia, extending from maritime Siberia in the north to Australia in the south, and as far as Pakistan to the west and Saipan to the east. Transmission of JEV in temperate zones is epidemic with the majority of cases occurring in summer months, while transmission in tropical zones is endemic and occurs year-round at lower rates. To test the hypothesis that viruses circulating in these two geographical zones are genetically distinct, we applied Bayesian phylogeographic, categorical data analysis and phylogeny-trait association test techniques to the largest JEV dataset compiled to date, representing the envelope (E) gene of 487 isolates collected from 12 countries over 75 years. We demonstrated that GIII and the recently emerged GI-b are temperate genotypes likely maintained year-round in northern latitudes, while GI-a and GII are tropical genotypes likely maintained primarily through mosquito-avian and mosquito-swine transmission cycles. This study represents a new paradigm directly linking viral molecular evolution and climate

    Direct observation of incommensurate magnetism in Hubbard chains

    Get PDF
    The interplay between magnetism and doping is at the origin of exotic strongly correlated electronic phases and can lead to novel forms of magnetic ordering. One example is the emergence of incommensurate spin-density waves with a wave vector that does not match the reciprocal lattice. In one dimension this effect is a hallmark of Luttinger liquid theory, which also describes the low energy physics of the Hubbard model. Here we use a quantum simulator based on ultracold fermions in an optical lattice to directly observe such incommensurate spin correlations in doped and spin-imbalanced Hubbard chains using fully spin and density resolved quantum gas microscopy. Doping is found to induce a linear change of the spin-density wave vector in excellent agreement with Luttinger theory predictions. For non-zero polarization we observe a decrease of the wave vector with magnetization as expected from the Heisenberg model in a magnetic field. We trace the microscopic origin of these incommensurate correlations to holes, doublons and excess spins which act as delocalized domain walls for the antiferromagnetic order. Finally, when inducing interchain coupling we observe fundamentally different spin correlations around doublons indicating the formation of a magnetic polaron
    corecore