research

Cellular structure of qq-Brauer algebras

Abstract

In this paper we consider the qq-Brauer algebra over RR a commutative noetherian domain. We first construct a new basis for qq-Brauer algebras, and we then prove that it is a cell basis, and thus these algebras are cellular in the sense of Graham and Lehrer. In particular, they are shown to be an iterated inflation of Hecke algebras of type An1.A_{n-1}. Moreover, when RR is a field of arbitrary characteristic, we determine for which parameters the qq-Brauer algebras are quasi-heredity. So the general theory of cellular algebras and quasi-hereditary algebras applies to qq-Brauer algebras. As a consequence, we can determine all irreducible representations of qq-Brauer algebras by linear algebra methods

    Similar works

    Full text

    thumbnail-image

    Available Versions