494 research outputs found

    Quasars: a supermassive rotating toroidal black hole interpretation

    Get PDF
    A supermassive rotating toroidal black hole (TBH) is proposed as the fundamental structure of quasars and other jet-producing active galactic nuclei. Rotating protogalaxies gather matter from the central gaseous region leading to the birth of massive toroidal stars whose internal nuclear reactions proceed very rapidly. Once the nuclear fuel is spent, gravitational collapse produces a slender ring-shaped TBH remnant. These events are typically the first supernovae of the host galaxies. Given time the TBH mass increases through continued accretion by several orders of magnitude, the event horizon swells whilst the central aperture shrinks. The difference in angular velocities between the accreting matter and the TBH induces a magnetic field that is strongest in the region of the central aperture and innermost ergoregion. Due to the presence of negative energy states when such a gravitational vortex is immersed in an electromagnetic field, circumstances are near ideal for energy extraction via non-thermal radiation including the Penrose process and superradiant scattering. This establishes a self-sustaining mechanism whereby the transport of angular momentum away from the quasar by relativistic bi-directional jets reinforces both the modulating magnetic field and the TBH/accretion disk angular velocity differential. Quasar behaviour is extinguished once the BH topology becomes spheroidal. Similar mechanisms may be operating in microquasars, SNe and GRBs when neutron density or BH tori arise. In certain circumstances, long-term TBH stability can be maintained by a negative cosmological constant, otherwise the classical topology theorems must somehow be circumvented. Preliminary evidence is presented that Planck-scale quantum effects may be responsible.Comment: 26 pages, 14 figs, various corrections and enhancements, final versio

    A timeband framework for modelling real-time systems

    Get PDF
    Complex real-time systems must integrate physical processes with digital control, human operation and organisational structures. New scientific foundations are required for specifying, designing and implementing these systems. One key challenge is to cope with the wide range of time scales and dynamics inherent in such systems. To exploit the unique properties of time, with the aim of producing more dependable computer-based systems, it is desirable to explicitly identify distinct time bands in which the system is situated. Such a framework enables the temporal properties and associated dynamic behaviour of existing systems to be described and the requirements for new or modified systems to be specified. A system model based on a finite set of distinct time bands is motivated and developed in this paper

    Pointfree factorization of operation refinement

    Get PDF
    The standard operation refinement ordering is a kind of “meet of op- posites”: non-determinism reduction suggests “smaller” behaviour while increase of definition suggests “larger” behaviour. Groves’ factorization of this ordering into two simpler relations, one per refinement concern, makes it more mathe- matically tractable but is far from fully exploited in the literature. We present a pointfree theory for this factorization which is more agile and calculational than the standard set-theoretic approach. In particular, we show that factorization leads to a simple proof of structural refinement for arbitrary parametric types and ex- ploit factor instantiation across different subclasses of (relational) operation. The prospect of generalizing the factorization to coalgebraic refinement is discussedFundação para a Ciência e a Tecnologia (FCT) - PURE Project (Program Understanding and Re-engineering: Calculi and Applications), contract POSI/ICHS/44304/2002

    The discourse dynamics approach to metaphor and metaphor-led discourse analysis

    Get PDF
    The use of metaphor as a tool to uncover people's ideas, attitudes, and values through analysis of discourse is demonstrated and illustrated with data collected in a social science research project. A 'discourse dynamics' approach to metaphor situated within a complexity/dynamic systems perspective is developed. This approach is turned into a method of 'metaphor-led discourse analysis' which is described in detail, using a focus group discussion to illustrate the procedure: transcription, metaphor identification, coding metaphors and using software, and finding patterns of metaphor use from coded data. The reasoning that justifies decisions at each stage of the procedure is made explicit so that the trustworthiness of the method can be maximized. The method of metaphor-led discourse analysis has been developed through a series of empirical projects to be accessible and relevant to social science researchers as well as to metaphor scholars

    Acting while perceiving: assimilation precedes contrast

    Get PDF
    To explore the nature of specific interactions between concurrent perception and action, participants were asked to move one of their hands in a certain direction while simultaneously observing an independent stimulus motion of a (dis)similar direction. The kinematics of the hand trajectories revealed a form of contrast effect (CE) in that the produced directions were biased away from the perceived directions (“Experiment 1”). Specifically, the endpoints of horizontal movements were lower when having watched an upward as opposed to a downward motion. However, when participants moved under higher speed constraints and were not presented with the stimulus motion prior to initiating their movements, the CE was preceded by an assimilation effect, i.e., movements were biased toward the stimulus motion directions (“Experiment 2”). These findings extend those of related studies by showing that CEs of this type actually correspond to the second phase of a bi-phasic pattern of specific perception–action interference

    Pointfree Factorization of Operation Refinement

    Full text link
    The standard operation refinement ordering is a kind of “meet of opposites”: non-determinism reduction suggests “smaller ” behaviour while increase of definition suggests “larger ” behaviour. Groves ’ factorization of this ordering into two simpler relations, one per refinement concern, makes it more mathematically tractable but is far from fully exploited in the literature. We present a pointfree theory for this factorization which is more agile and calculational than the standard set-theoretic approach. In particular, we show that factorization leads to a simple proof of structural refinement for arbitrary parametric types and exploit factor instantiation across different subclasses of (relational) operation. The prospect of generalizing the factorization to coalgebraic refinement is discussed

    Spiral valve parasites of blue and common thresher sharks as indicators of shark feeding behaviour and ecology

    Get PDF
    Open Access via the Jisc Wiley agreement Acknowledgements This work would not have been possible without the assistance and samples provided by the National Marine Fisheries Service (NMFS) Southwest Region Fishery Observer Program and the participating drift gillnet fishermen. A. Arevalo, E. Reed, H. Colley, J. Williams, J. Tamez and K. Tran assisted with spiral valve dissections and parasite sorting in the lab. D. Losey helped with library research. D. Sweetnam, A. Yau, A. Thompson, M. Craig, S. Stohs, G. DiNardo provided constructive critiques that helped improve the manuscript. This research was supported by the National Oceanographic Atmospheric Administration (NOAA).Peer reviewedPublisher PD

    On interference effects in concurrent perception and action

    Get PDF
    Recent studies have reported repulsion effects between the perception of visual motion and the concurrent production of hand movements. Two models, based on the notions of common coding and internal forward modeling, have been proposed to account for these phenomena. They predict that the size of the effects in perception and action should be monotonically related and vary with the amount of similarity between what is produced and perceived. These predictions were tested in four experiments in which participants were asked to make hand movements in certain directions while simultaneously encoding the direction of an independent stimulus motion. As expected, perceived directions were repelled by produced directions, and produced directions were repelled by perceived directions. However, contrary to the models, the size of the effects in perception and action did not covary, nor did they depend (as predicted) on the amount of perception–action similarity. We propose that such interactions are mediated by the activation of categorical representations
    corecore