918 research outputs found

    Cavity-enhanced superradiant Rayleigh scattering with ultra-cold and Bose-Einstein condensed atoms

    Get PDF
    We report on the observation of collective atomic recoil lasing and superradiant Rayleigh scattering with ultracold and Bose-Einstein condensed atoms in an optical ring cavity. Both phenomena are based on instabilities evoked by the collective interaction of light with cold atomic gases. This publication clarifies the link between the two effects. The observation of superradiant behavior with thermal clouds as hot as several tens of μK\mu\textrm{K} proves that the phenomena are driven by the cooperative dynamics of the atoms, which is strongly enhanced by the presence of the ring cavity.Comment: 10 pages, 10 figure

    Experimental Demonstration of Squeezed State Quantum Averaging

    Get PDF
    We propose and experimentally demonstrate a universal quantum averaging process implementing the harmonic mean of quadrature variances. The harmonic mean protocol can be used to efficiently stabilize a set of fragile squeezed light sources with statistically fluctuating noise levels. The averaged variances are prepared probabilistically by means of linear optical interference and measurement induced conditioning. We verify that the implemented harmonic mean outperforms the standard arithmetic mean strategy. The effect of quantum averaging is experimentally tested both for uncorrelated and partially correlated noise sources with sub-Poissonian shot noise or super-Poissonian shot noise characteristics.Comment: 4 pages, 5 figure

    Sensitivity of outcome instruments in a priori selected patient groups after traumatic brain injury:Results from the CENTER-TBI study

    Get PDF
    Traumatic brain injury (TBI) can negatively impact patients' lives on many dimensions. Multiple instruments are available for evaluating TBI outcomes, but it is still unclear which instruments are the most sensitive for that purpose. This study examines the sensitivity of nine outcome instruments in terms of their ability to discriminate within and between specific patient groups, selected a priori as identified from the literature, at three different time points within a year after TBI (i.e., 3, 6, and 12 months post injury). The sensitivity of the instruments to sociodemographic (sex, age, education), premorbid (psychological health status), and injury-related (clinical care pathways, TBI and extracranial injury severity) factors was assessed by means of cross-sectional multivariate Wei-Lachin analyses. The Glasgow Outcome Scale Extended (GOSE)-the standard in the field of TBI for measuring functional recovery-demonstrated the highest sensitivity in most group comparisons. However, as single functional scale, it may not be able to reflect the multidimensional nature of the outcome. Therefore, the GOSE was used as a reference for further sensitivity analyses on more specific outcome scales, addressing further potential deficits following TBI. The physical component summary score (PCS) of the generic health-related quality of life (HRQOL) instruments (SF-36v2/-12v2) and the TBI-specific HRQOL instruments (QOLIBRI/-OS) were most sensitive in distinguishing recovery after TBI across all time points and patient groups, followed by the RPQ assessing post-concussion symptoms and the PHQ-9 measuring depression. The SF-36v2/-12v2 mental component summary score and the GAD-7 measuring anxiety were less sensitive in several group comparisons. The assessment of the functional recovery status combined with generic HRQOL (the PCS of the SF-12v2), disease-specific HRQOL (QOLIBRI-OS), and post-concussion symptoms (RPQ) can provide a sensitive, comprehensive, yet time-efficient evaluation of the health status of individuals after TBI in different patient groups.</p

    Excited-state band mapping and momentum-resolved ultrafast population dynamics in In/Si(111) nanowires investigated with XUV-based time- and angle-resolved photoemission spectroscopy

    Get PDF
    We investigate the excited state electronic structure of the model phase transition system In/Si(111) using femtosecond time- and angle-resolved photoemission spectroscopy (trARPES). An extreme ultraviolet 500 kHz laser source at 21.7 eV is utilized both to map the energy of excited states above the Fermi level and follow the momentum-resolved population dynamics on a femtosecond timescale. Excited-state band mapping is used to characterize the normally unoccupied electronic structure above the Fermi level in both structural phases of In/Si(111): the metallic (4 x 1) and the gapped (8 x 2) phases. The extracted band positions are compared withband- structure calculations utilizing density functional theory within both the local density approximation and GW approximations (single-particle Green's function (G) + screened Coulomb interaction (W)). While good overall agreement is found between the GW-calculated band structure and experiment, deviations in specific momentum regions may indicate the importance of excitonic effects not accounted for at this level of approximation. To probe the dynamics of these excited states, their momentum- resolved transient population dynamics are extracted with trARPES. The transient intensities are compared to a simulated spectral function modeled by a state population employing a transient elevated electronic temperature as determined experimentally. This allows the momentum-resolved population dynamics to be quantitatively reproduced, revealing important insights into the transfer of energy from the electronic system to the lattice. In particular, a comparison between the magnitude and relaxation time of the transient electronic temperature observed by trARPES with those of the lattice as probed in previous ultrafast electron diffraction studies implies a highly nonthermal phonon distribution at the surface following photo-excitation. This suggests that the energy from the initially excited electronic system is initially transferred to high-energy optical phonon modes followed by cooling and thermalization of the photo-excited system by much slower phonon-phonon coupling

    Psychometric Characteristics of the Patient-Reported Outcome Measures Applied in the CENTER-TBI Study.

    Get PDF
    Traumatic brain injury (TBI) may lead to impairments in various outcome domains. Since most instruments assessing these are only available in a limited number of languages, psychometrically validated translations are important for research and clinical practice. Thus, our aim was to investigate the psychometric properties of the patient-reported outcome measures (PROM) applied in the CENTER-TBI study. The study sample comprised individuals who filled in the six-months assessments (GAD-7, PHQ-9, PCL-5, RPQ, QOLIBRI/-OS, SF-36v2/-12v2). Classical psychometric characteristics were investigated and compared with those of the original English versions. The reliability was satisfactory to excellent; the instruments were comparable to each other and to the original versions. Validity analyses demonstrated medium to high correlations with well-established measures. The original factor structure was replicated by all the translations, except for the RPQ, SF-36v2/-12v2 and some language samples for the PCL-5, most probably due to the factor structure of the original instruments. The translation of one to two items of the PHQ-9, RPQ, PCL-5, and QOLIBRI in three languages could be improved in the future to enhance scoring and application at the individual level. Researchers and clinicians now have access to reliable and valid instruments to improve outcome assessment after TBI in national and international health care

    Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation

    Get PDF
    A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen et al. (Ann Biomed Eng 28:1281–1299, 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of ‘large’ arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the ‘smaller’ arteries and veins of radii ≥ 50 μ m. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment for circulatory diseases within the lung
    • …
    corecore