198 research outputs found
Alternative axiomatics and complexity of deliberative STIT theories
We propose two alternatives to Xu's axiomatization of the Chellas STIT. The
first one also provides an alternative axiomatization of the deliberative STIT.
The second one starts from the idea that the historic necessity operator can be
defined as an abbreviation of operators of agency, and can thus be eliminated
from the logic of the Chellas STIT. The second axiomatization also allows us to
establish that the problem of deciding the satisfiability of a STIT formula
without temporal operators is NP-complete in the single-agent case, and is
NEXPTIME-complete in the multiagent case, both for the deliberative and the
Chellas' STIT.Comment: Submitted to the Journal of Philosophical Logic; 13 pages excluding
anne
Prostaglandin E(2) in a TLR3- and 7/8-agonist-based DC maturation cocktail generates mature, cytokine-producing, migratory DCs but impairs antigen cross-presentation to CD8(+) T cells
Mature dendritic cells (DCs) represent cellular adjuvants for optimal antigen presentation in cancer vaccines. Recently, a combination of prostaglandin E(2) (PGE(2)) with Toll-like receptor agonists (TLR-P) was proposed as a new standard to generate superior cytokine-producing DCs with high migratory capacity. Here, we compare TLR-P DCs with conventional DCs matured only with the proinflammatory cytokines TNFα and IL-1ß (CDCs), focussing on the interaction of resulting DCs with CD8(+) T-cells. TLR-P matured DCs showed elevated expression of activation markers such as CD80 and CD83 compared to CDCs, together with a significantly higher migration capacity. Secretion of IL-6, IL-8, IL-10, and IL-12 was highest after 16 h in TLR-P DCs, and only TLR-P DCs secreted active IL-12p70. TLR-P DCs as well as CDCs successfully primed multifunctional CD8(+) T-cells from naïve precursors specific for the peptide antigens Melan-A, NLGN4X, and PTP with comparable priming efficacy and T-cell receptor avidity. CD8(+) T-cells primed by TLR-P DCs showed significantly elevated expression of the integrin VLA-4 and a trend for higher T-cell numbers after expansion. In contrast, TLR-P DCs displayed a substantially reduced capability to cross-present CMVpp65 protein antigen to pp65-specific T cells, an effect that was dose-dependent on PGE(2) during DC maturation and reproducible with several responder T-cell lines. In conclusion, TLR-P matured DCs might be optimal presenters of antigens not requiring processing such as short peptides. However, PGE(2) seems less favorable for maturation of DCs intended to process and cross-present more complex vaccine antigens such as lysates, proteins or long peptides
Persistence of Different Forms of Transient RNAi during Apoptosis in Mammalian Cells
Gene silencing by transient or stable RNA-interference (RNAi) is used for the study of apoptosis with an assumption that apoptotic events will not influence RNAi. However, we recently reported that stable RNAi, i.e., a permanent gene-knockdown mediated by shRNA-generating DNA vectors that are integrated in the genome, fails rapidly after induction of apoptosis due to caspase-3-mediated cleavage and inactivation of the endoribonuclease Dicer-1 that is required for conversion of shRNA to siRNA. Since apoptosis studies also increasingly employ transient RNAi models in which apoptosis is induced immediately after a gene is temporarily knocked down within a few days of transfection with RNAi-inducing agents, we examined the impact of apoptosis on various models of transient RNAi. We report here that unlike the stable RNAi, all forms of transient RNAi, whether Dicer-1-independent (by 21mer dsRNA) or Dicer-1-dependent (by 27mer dsRNA or shRNA-generating DNA vector), whether for an exogenous gene GFP or an endogenous gene poly(ADP-ribose) polymerase-1, do not fail for 2–3 days after onset of apoptosis. Our results reflect the differences in dynamics of achieving and maintaining RNAi during the early phase after transfection in the transient RNAi model and the late steady-state phase of gene-knockdown in stable RNAi model. Our results also sound a cautionary note that RNAi status should be frequently validated in the studies involving apoptosis and that while stable RNAi can be safely used for the study of early apoptotic events, transient RNAi is more suitable for the study of both early and late apoptotic events
Helical Chirality: a Link between Local Interactions and Global Topology in DNA
DNA supercoiling plays a major role in many cellular functions. The global DNA conformation is however intimately linked to local DNA-DNA interactions influencing both the physical properties and the biological functions of the supercoiled molecule. Juxtaposition of DNA double helices in ubiquitous crossover arrangements participates in multiple functions such as recombination, gene regulation and DNA packaging. However, little is currently known about how the structure and stability of direct DNA-DNA interactions influence the topological state of DNA. Here, a crystallographic analysis shows that due to the intrinsic helical chirality of DNA, crossovers of opposite handedness exhibit markedly different geometries. While right-handed crossovers are self-fitted by sequence-specific groove-backbone interaction and bridging Mg2+ sites, left-handed crossovers are juxtaposed by groove-groove interaction. Our previous calculations have shown that the different geometries result in differential stabilisation in solution, in the presence of divalent cations. The present study reveals that the various topological states of the cell are associated with different inter-segmental interactions. While the unstable left-handed crossovers are exclusively formed in negatively supercoiled DNA, stable right-handed crossovers constitute the local signature of an unusual topological state in the cell, such as the positively supercoiled or relaxed DNA. These findings not only provide a simple mechanism for locally sensing the DNA topology but also lead to the prediction that, due to their different tertiary intra-molecular interactions, supercoiled molecules of opposite signs must display markedly different physical properties. Sticky inter-segmental interactions in positively supercoiled or relaxed DNA are expected to greatly slow down the slithering dynamics of DNA. We therefore suggest that the intrinsic helical chirality of DNA may have oriented the early evolutionary choices for DNA topology
Transcriptional Profiling of Human Familial Longevity Indicates a Role for ASF1A and IL7R
The Leiden Longevity Study consists of families that express extended survival across generations, decreased morbidity in middle-age, and beneficial metabolic profiles. To identify which pathways drive this complex phenotype of familial longevity and healthy aging, we performed a genome-wide gene expression study within this cohort to screen for mRNAs whose expression changes with age and associates with longevity. We first compared gene expression profiles from whole blood samples between 50 nonagenarians and 50 middle-aged controls, resulting in identification of 2,953 probes that associated with age. Next, we determined which of these probes associated with longevity by comparing the offspring of the nonagenarians (50 subjects) and the middle-aged controls. The expression of 360 probes was found to change differentially with age in members of the long-lived families. In a RT-qPCR replication experiment utilizing 312 controls, 332 offspring and 79 nonagenarians, we confirmed a nonagenarian specific expression profile for 21 genes out of 25 tested. Since only some of the offspring will have inherited the beneficial longevity profile from their long-lived parents, the contrast between offspring and controls is expected to be weak. Despite this dilution of the longevity effects, reduced expression levels of two genes, ASF1A and IL7R, involved in maintenance of chromatin structure and the immune system, associated with familial longevity already in middle-age. The size of this association increased when controls were compared to a subfraction of the offspring that had the highest probability to age healthily and become long-lived according to beneficial metabolic parameters. In conclusion, an “aging-signature” formed of 21 genes was identified, of which reduced expression of ASF1A and IL7R marked familial longevity already in middle-age. This indicates that expression changes of genes involved in metabolism, epigenetic control and immune function occur as a function of age, and some of these, like ASF1A and IL7R, represent early features of familial longevity and healthy ageing
Role of Heterozygous APC Mutation in Niche Succession and Initiation of Colorectal Cancer – A Computational Study
Mutations in the adenomatous polyposis coli (APC) gene are found in most colorectal cancers. They cause constitutive activation of proliferative pathways when both alleles of the gene are mutated. However studies on individuals with familial adenomatous polyposis (FAP) have shown that a single mutated APC allele can also create changes in the precancerous colon crypt, like increased number of stem cells, increased crypt fission, greater variability of DNA methylation patterns, and higher somatic mutation rates. In this paper, using a computational model of colon crypt dynamics, we evolve and investigate a hypothesis on the effect of heterozygous APC mutation that explains these different observations. Based on previous reports and the results from the computational model we propose the hypothesis that heterozygous APC mutation has the effect of increasing the chances for a stem cell to divide symmetrically, producing two stem cell daughters. We incorporate this hypothesis into the model and perform simulation experiments to investigate the consequences of the hypothesis. Simulations show that this hypothesis links together the changes in FAP crypts observed in previous studies. The simulations also show that an APC+/− stem cell gets selective advantages for dominating the crypt and progressing to cancer. This explains why most colon cancers are initiated by APC mutation. The results could have implications for preventing or retarding the onset of colon cancer in people with inherited or acquired mutation of one APC allele. Experimental validation of the hypothesis as well as investigation into the molecular mechanisms of this effect may therefore be worth undertaking
Novel Exon of Mammalian ADAR2 Extends Open Reading Frame
Background: The post-transcriptional processing of pre-mRNAs by RNA editing contributes significantly to the complexity of the mammalian transcriptome. RNA editing by site-selective A-to-I modification also regulates protein function through recoding of genomically specified sequences. The adenosine deaminase ADAR2 is the main enzyme responsible for recoding editing and loss of ADAR2 function in mice leads to a phenotype of epilepsy and premature death. Although A-to-I RNA editing is known to be subject to developmental and cell-type specific regulation, there is little knowledge regarding the mechanisms that regulate RNA editing in vivo. Therefore, the characterization of ADAR expression and identification of alternative ADAR variants is an important prerequisite for understanding the mechanisms for regulation of RNA editing and the causes for deregulation in disease. Methodology/Principal Findings: Here we present evidence for a new ADAR2 splice variant that extends the open reading frame of ADAR2 by 49 amino acids through the utilization of an exon located 18 kilobases upstream of the previously annotated first coding exon and driven by a candidate alternative promoter. Interestingly, the 49 amino acid extension harbors a sequence motif that is closely related to the R-domain of ADAR3 where it has been shown to function as a basic, single-stranded RNA binding domain. Quantitative expression analysis shows that expression of the novel ADAR2 splice variant is tissue specific being highest in the cerebellum
Natural and cryptic peptides dominate the immunopeptidome of atypical teratoid rhabdoid tumors
BACKGROUND: Atypical teratoid/rhabdoid tumors (AT/RT) are highly aggressive CNS tumors of infancy and early childhood. Hallmark is the surprisingly simple genome with inactivating mutations or deletions in the SMARCB1 gene as the oncogenic driver. Nevertheless, AT/RTs are infiltrated by immune cells and even clonally expanded T cells. However, it is unclear which epitopes T cells might recognize on AT/RT cells. METHODS: Here, we report a comprehensive mass spectrometry (MS)-based analysis of naturally presented human leukocyte antigen (HLA) class I and class II ligands on 23 AT/RTs. MS data were validated by matching with a human proteome dataset and exclusion of peptides that are part of the human benignome. Cryptic peptide ligands were identified using Peptide-PRISM. RESULTS: Comparative HLA ligandome analysis of the HLA ligandome revealed 55 class I and 139 class II tumor-exclusive peptides. No peptide originated from the SMARCB1 region. In addition, 61 HLA class I tumor-exclusive peptide sequences derived from non-canonically translated proteins. Combination of peptides from natural and cryptic class I and class II origin gave optimal representation of tumor cell compartments. Substantial overlap existed with the cryptic immunopeptidome of glioblastomas, but no concordance was found with extracranial tumors. More than 80% of AT/RT exclusive peptides were able to successfully prime CD8(+) T cells, whereas naturally occurring memory responses in AT/RT patients could only be detected for class II epitopes. Interestingly, >50% of AT/RT exclusive class II ligands were also recognized by T cells from glioblastoma patients but not from healthy donors. CONCLUSIONS: These findings highlight that AT/RTs, potentially paradigmatic for other pediatric tumors with a low mutational load, present a variety of highly immunogenic HLA class I and class II peptides from canonical as well as non-canonical protein sources. Inclusion of such cryptic peptides into therapeutic vaccines would enable an optimized mapping of the tumor cell surface, thereby reducing the likelihood of immune evasion
- …