147 research outputs found
Multi-Level quasi-Newton methods for the partitioned simulation of fluid-structure interaction
In previous work of the authors, Fourier stability analyses have been performed of Gauss-Seidel iterations between the flow solver and the structural solver in a partitioned fluid-structure interaction simulation. These analyses of the flow in an elastic tube demonstrated that only a number of Fourier modes in the error on the interface displacement are unstable. Moreover, the modes with a low wave number are most unstable and these modes can be resolved on a coarser grid. Therefore, a new class of quasi-Newton methods with more than one grid level is introduced. Numerical experiments show a significant reduction in run time
Wind-structure interaction simulations for the prediction of ovalling vibrations in silo groups
Wind-induced ovalling vibrations were observed during a storm in October 2002 on several empty silos of a closely spaced group consisting of 8 by 5 thin-walled silos in the port of Antwerp (Belgium). The purpose of the present research is to investigate if such ovalling vibrations can be predicted by means of numerical simulations. More specifically, the necessity of performing computationally demanding wind-structure interaction (WSI) simulations is assessed. For this purpose, both one-way and two-way coupled simulations are performed. Before considering the entire silo group, a single silo in crosswind is simulated. The simulation results are in reasonably good agreement with observations and WSI simulations seem to be required for a correct prediction of the observed ovalling vibrations
A conservative pressure-correction scheme for transient simulations of reacting flows
AbstractAn algorithm is presented for numerical simulations of time-dependent low Mach number variable density flows with an arbitrary amount of scalar transport equations and a complex equation of state. The pressure-correction type algorithm is based on a segregated solution formalism. It is conservative and guarantees stable results, regardless of the difference in density between neighboring cells. Furthermore, states are predicted which exactly match the equation of state. In the one-dimensional example, considering non-premixed flames, a simplified flamesheet model is used to describe the combustion of fuel and oxidizer. We demonstrate that the predicted states exactly correspond to the equation of state. We illustrate the accuracy improvement due to higher order formulation and demonstrate grid convergence
Modal characteristics of a flexible tube in turbulent axial flow: a numerical approach and validation with experimental data
Flow-induced vibration is an important concern in the design of tube bundles.
Due to the coupling of fluid motion and structural motion, instabilities such as
flutter and divergence can arise. Next to the instabilities caused by the coupling of fluid
motion and structural motion, turbulence could cause small amplitude vibrations, which
in turn could give rise to long-term damage. Currently, the dynamical behavior of a tube
in axial flow is studied by splitting the flow forces into inviscid and viscous components.
The inviscid flow forces are determined from potential flow theory while the viscous flow
forces come from empirical formulations.
In this paper, a computational methodology is proposed to improve the accuracy of the
predicted dynamical behaviour. In this methodology partitioned fluid-structure interaction
simulations are performed to calculate the free vibration decay of a tube in axial
flow. The tube is initially deformed according to an eigenmode in vacuum. Modal characteristics
are then derived from the free vibration decay of the tube surrounded by the
turbulent water flow. To validate this computational methodology a series of experiments
is reproduced. In these experiments the frequency and damping of the fundamental mode
of a solid brass cylinder were measured
Recommended from our members
Normal Rack Grid Generation Method for Screw Machines with Large Helix Angles
Improving the efficiency of the screw machine is highly significant for industry. Numerical simulation is an important tool in developing these machines. The 3D computational fluid dynamic simulation can give a valuable insight into the flow parameters of screw machines. However, it is currently difficult to generate high quality computational grids required for screw rotors with large helix angle. This is mainly due to the excessively high cell skewness of the rotors with large helix angel, which would introduce errors in numerical simulation. This paper presents a novel grid generation algorithm used for the screw rotors with large helix angel. This method is based on the principles developed for the grid generation in transverse cross-section. Such mesh is generated by SCORGTM using normal rack grid generation method which means numerical meshes are generated in a plane normal to the pitch helix line. The mesh lines are then parallel to the helix line and thus an orthogonal mesh will be produced. The main flow and leakage flow directions are orthogonal to the mesh, potentially reducing numerical diffusion. This developed algorithm could also be employed for single screw machines
Patient-specific CFD models for intraventricular flow analysis from 3D ultrasound imaging : comparison of three clinical cases
Background: As the intracardiac flow field is affected by changes in shape and motility of the heart, intraventricular flow features can provide diagnostic indications. Ventricular flow patterns differ depending on the cardiac condition and the exploration of different clinical cases can provide insights into how flow fields alter in different pathologies. Methods: In this study, we applied a patient-specific computational fluid dynamics model of the left ventricle and mitral valve, with prescribed moving boundaries based on transesophageal ultrasound images for three cardiac pathologies, to verify the abnormal flow patterns in impaired hearts. One case (P1) had normal ejection fraction but low stroke volume and cardiac output, P2 showed low stroke volume and reduced ejection fraction, P3 had a dilated ventricle and reduced ejection fraction. Results: The shape of the ventricle and mitral valve, together with the pathology influence the flow field in the left ventricle, leading to distinct flow features. Of particular interest is the pattern of the vortex formation and evolution, influenced by the valvular orifice and the ventricular shape. The base-to-apex pressure difference of maximum 2 mmHg is consistent with reported data. Conclusion: We used a CFD model with prescribed boundary motion to describe the intraventricular flow field in three patients with impaired diastolic function. The calculated intraventricular flow dynamics are consistent with the diagnostic patient records and highlight the differences between the different cases. The integration of clinical images and computational techniques, therefore, allows for a deeper investigation intraventricular hemodynamics in patho-physiology. (C) 2016 Elsevier Ltd. All rights reserved
CFD investigation of a complete floating offshore wind turbine
This chapter presents numerical computations for floating offshore wind turbines for a machine of 10-MW rated power. The rotors were computed using the Helicopter Multi-Block flow solver of the University of Glasgow that solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. Hydrodynamic loads on the support platform were computed using the Smoothed Particle Hydrodynamics method. This method is mesh-free, and represents the fluid by a set of discrete particles. The motion of the floating offshore wind turbine is computed using a Multi-Body Dynamic Model of rigid bodies and frictionless joints. Mooring cables are modelled as a set of springs and dampers. All solvers were validated separately before coupling, and the loosely coupled algorithm used is described in detail alongside the obtained results
Fluid-structure interaction simulation of prosthetic aortic valves : comparison between immersed boundary and arbitrary Lagrangian-Eulerian techniques for the mesh representation
In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian) or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations' outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results
- …