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a b s t r a c t

An algorithm is presented for numerical simulations of time-dependent lowMach number
variable density flows with an arbitrary amount of scalar transport equations and a
complex equation of state. The pressure-correction type algorithm is based on a segregated
solution formalism. It is conservative and guarantees stable results, regardless of the
difference in density between neighboring cells. Furthermore, states are predicted which
exactly match the equation of state. In the one-dimensional example, considering non-
premixed flames, a simplified flamesheet model is used to describe the combustion of fuel
and oxidizer. We demonstrate that the predicted states exactly correspond to the equation
of state. We illustrate the accuracy improvement due to higher order formulation and
demonstrate grid convergence.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Recently, large eddy simulations (LES) have become increasingly important in turbulent combustion simulations. They
require time-accurate solutions. Common pressure-correction schemes, developed for incompressible flows, can no longer
be used due to lack of stability [1,2]. Instabilities arise when the density variations, due to e.g. temperature variations,
are too large. In [3], we showed that for a non-reacting single-fluid ideal-gas flow, a constraint for the velocity field can
be formulated, such that the solution is stable. Later [4], the propositions of [3] were extended towards non-premixed
combustion, making use of the mixture fraction as a conserved variable. A pressure-correction algorithm was obtained
which (1) conserves mass, (2) conserves fuel elements’ mass and (3) is stable and robust, without the need for (unphysical)
rescaling factors. The latter is important for LES, where time accuracy of the transient simulations needs to be respected. The
introduction of rescaling factors in the algorithm, for stabilization of the standard pressure-correction algorithms, corrupts
this time accuracy.
The three above mentioned properties are naturally obtained for a linear equation of state, as for single-fluid ideal-gas

and two-fluid inert mixing, with the pressure projectionmethods of [5,6]. When applied onmore general equations of state,
as in reacting flows, it is claimed in [7] that these three properties cannot be fulfilled at the same time. We disagree with
this statement.
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In the present paper, we repeat some key features of the algorithm, described in [4] and discuss a formulation for
an arbitrary number of scalar equations and a general equation of state. We show that all scalars are conserved, mass is
conserved and the equation of state is fulfilled in an exact manner. The algorithm is applied to a severe test case for stability,
involving non-premixed combustion, serving as an illustrative example formore general flows. The flow is one-dimensional.
An initial step in mixture fraction is convected by a constant velocity U . A Burke–Schumann flamesheet chemistry model
is used to describe the combustion. Higher order monotone discretization schemes are compared. A grid refinement study
shows that the discretization error converges to zero, still preserving the exact correspondence to the equation of state.

2. Governing equations

The basic equations are the Navier–Stokes equations for the flow field, with N additional scalar equations. The
conservation of mass, momentum and scalars, with summation convention, reads:

∂ρ

∂t
+
∂ρui
∂xi
= 0 (1)

∂ρui
∂t
+
∂ρuiuj
∂xj

+
∂p
∂xi
=
∂τij

∂xj
(2)

∂ρyα
∂t
+
∂ρuiyα
∂xi

= RHSα (3)

with α = 1, . . . ,N . In these equations, ρ denotes the density, u the velocity, p the pressure and yα a generic scalar. The
molecular viscous stress tensor τij is given by

τij = µ

[(
∂ui
∂xj
+
∂uj
∂xi

)
−
2
3
∂uk
∂xk

δij

]
(4)

with µ the viscosity and δij the Kronecker delta.
For a general fluid at lowMach number, a general equation of state can be formulated, expressing that the state variables

ρ and yα are not independent:

G (ρ, y1, . . . , yN) = 0 or H (ρ, ρy1, . . . , ρyN) = 0. (5)
In the simulation examples, a non-premixed reacting fluid is considered, governed by the Navier–Stokes equations (1)

and (2), and one additional scalar equation for mixture fraction ξ (e.g. [8]):

∂ρξ

∂t
+
∂ρuiξ
∂xi

=
∂

∂xi

(
ρD
∂ξ

∂xi

)
, (6)

with D the species diffusivity. The mixture fraction is a non-dimensional variable, equal to 1 in pure fuel and 0 in pure
oxidizer and describes the mixing between the two components (fuel and oxidizer). Since the equation for mixture fraction
is based on chemical elements, rather than on chemical species, there is no source term in the equation.
One can also write an equation for static enthalpy, which is the sum of formation enthalpy and sensible enthalpy:

h = h0+cp(T−Tref). Under the commonlymade assumptions in turbulent flow calculations of unity Lewis number (species
diffusivity is equal to thermal diffusivity), in the absence of radiation and neglecting minor diffusion effects, such as Soret
and Dufour effects, the enthalpy equation reads:

∂ρh
∂t
+
∂ρuih
∂xi
=

∂

∂xi

(
ρD

∂h
∂xi

)
−
dp0
dt
. (7)

Unless the reactions take place in a closed environment, the thermodynamic pressure p0 is constant in space and time, and
the enthalpy equation is similar to the equation formixture fraction. Because, for a normalized enthalpy, the same boundary
conditions apply as for the mixture fraction equation, Eq. (7) is superfluous and enthalpy can be algebraically derived from
mixture fraction.
The equation of state is based on the ideal-gas law: ρ = p0/(RT ), with R the gas constant in J/(kg K). The temperature

follows from the definition of enthalpy and thus depends entirely on mixture fraction in case of constant p0. We adopt a
simple chemistry model, assuming irreversible and infinitely fast chemistry (Burke–Schumann flamesheet model [9]). In
that case, fuel and oxidizer cannot be found together at the same place and only three species exist: fuel, oxidizer and
products. The equation of state consists of two branches, on the lean and rich side of stoichiometry. The lowest density is
found at stoichiometry, where temperatures are the highest. If we further assume, for simplicity, equal molecular weights
for fuel, oxidizer and products, the equation of state results in a piecewise linear relationship ρ = HC (ρξ):

ρ = ρ0 +
ρst − ρ0

ρstξst
ρξ for ξ ≤ ξst

ρ = ρ0 +
ρst − ρ0

ρ0 − ρstξst
(ρ0 − ρξ) for ξ ≥ ξst , (8)
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Fig. 1. Density as a function of mixture fraction (ξ ) and fuel elements’ mass (ρξ ), if we assume all molecular weights to be equal.

depicted in Fig. 1. This equation of state is non-linear and non-differentiable in the stoichiometric point, and forms therefore
a challenge for the algorithm. In the remainder, the following dimensional values will be used: ρ0 = 1.25 kg/m3,
ρst = 0.27 kg/m3, ξst = 0.1.
If the thermodynamic pressure is not constant, as is e.g. the case in internal combustion engines, the temperature is a

function of enthalpy andmixture fraction, such that the equation of state has the form ρ = HC (ρh, ρξ), which is, under the
same conditions and assumptions, a piecewise bilinear equation. More variables can be added, depending on the physics.
For instance, if ignition or extinction needs to be modelled, more chemistry must be included, involving extra transport
equations for progress variables. Also, especially in RANS turbulence modelling, turbulent fluctuations can be regarded as
an extra scalar variable. The list of possible extra scalars is endless and shows the potential applicability of the presented
algorithm for any scientific domain. In the examples below, the scalar equation for mixture fraction serves as an illustration
for the general case.

3. The pressure-correction formalism

The pressure-correction formalism of [10–12]was originally developed for constant density flows. The general algorithm
has proven to be accurate in these flows and no substantial problems are encountered there. The basic idea behind the
pressure-correction strategy is to advance momentum in two steps.
First a prediction is made of velocity (or momentum), using the momentum equations with the pressure term evaluated

at time level n:(
ρuj
)∗
=
(
ρuj
)n
+1t

[
−
δ
(
ρuiuj

)n
δxi

−
δpn

δxj
+
δτ nij

δxi

]
. (9)

The δ-notation is introduced to stress the fact that the derivatives are discrete.
Ultimately, the following equation, with the pressure, an acoustic term, evaluated implicitly at time level n+ 1, must be

satisfied:(
ρuj
)n+1
=
(
ρuj
)n
+1t

[
−
δ
(
ρuiuj

)n
δxi

−
δpn+1

δxj
+
δτ nij

δxi

]
.

The predicted field is corrected to give the velocity at the new time level(
ρuj
)n+1
=
(
ρuj
)∗
+
(
ρuj
)′ (10)

with the correction for the momentum
(
ρuj
)′ related to the correction for the pressure p′ = pn+1 − pn:(

ρuj
)′
= −1t

δp′

δxj
. (11)

The correction for the pressure follows from inversion of an elliptic equation, based on a constraining equation for the
velocity field at time level n + 1. In constant density flows, the continuity equation naturally imposes a constraint on the
velocity field:

δ (ρui)n+1

δxi
= 0, (12)

so that the pressure equation in this case is:
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δ2p′

δx2i
= −

1
1t
δ (ρui)∗

δxi
. (13)

In variable density flow, the constraining equation can be built inmultipleways and this forms themajor difference between
several pressure-correction formalisms. The key to obtain a pressure-correction algorithm that satisfies all prerequisites of
conservation and state equation fulfillment, is to build a consistent constraining equation for the velocity (or momentum),
as is done in the next section. This is a generalization of what was presented in [3].

4. Algorithmic strategy for general incompressible fluid

The starting point are the conservation equations (1)–(3). We assume that the right hand side of the transport equations,
containing diffusive and source terms, is discretized conservatively. If a first order time stepping is used, the continuity and
scalar equations are discretized in time as:

ρn+1 = ρn −1t
δ (ρui)n

δxi
(14)

(ρyα)n+1 = (ρyα)n −1t
δ (ρuiyα)n

δxi
+1tRHSnα, (15)

which provides the values of density and scalars at the new time level. As explained in Section 3, the velocity is determined in
two steps. The predicted value follows fromEq. (9), whereas the ultimate value at time level n+1 follows froma constraining
equation. A constraint for un+1i is found by combination of (14) and (15), shifted to the next time level:

ρn+2 = ρn+1 −1t
δ (ρui)n+1

δxi
(16)

(ρyα)n+2 = (ρyα)n+1 −1t
δ (ρuiyα)n+1

δxi
+1tRHSn+1α . (17)

The constraint is now formulated by requiring that the equation of state is fulfilled at every time level, in particular at
time level n+ 2:

H
(
ρn+2, (ρy1)n+2 , . . . , (ρyN)n+2

)
= 0, (18)

which yields, after inserting (16) and (17) a non-linear equation in un+1i and ultimately in p′.
To the best of the authors’ knowledge, this strategy has not been followed before. Researchers always searched for

constraining equations, built on the analytical differential equations. This yields an algorithm that does not satisfy all the
requirements we impose. A reason for this might be historical: the first algorithms were developed to obtain a steady state
solution, where no benefit is found in a discrete construction of the constraint. When time accuracy becomes important, as
it is nowadays, algorithms with better properties are required.

5. Iterative scheme for reacting flows

As shown in the previous section, a non-linear equation for pressure is obtained. In this section, we show how to solve
the equation in an efficient manner for the case of non-premixed combustion. For clarity, the equations are written in a 1D
configuration, where the subscript i refers to a grid point.
In this case, one scalar, namely the mixture fraction, is present. The constraining equation can now be written, using a

chemical operatorHC , defined as ρ = HC (ρξ) according to (8):

H
(
ρn+2i , (ρξ)n+2i

)
= 0 or ρn+2i = HC

(
(ρξ)n+2i

)
. (19)

For ease of notation, we introduce a new variable, fuel elementsmass f , defined as f = ρξ . Obeying constraint (19), requires
the discrete evaluation of mass and fuel elements mass conservation:

ρn+1i = ρni −
1t
1x

(
ρnRu

n
i+ 12
− ρnL u

n
i− 12

)
(20)

f n+1i = f ni −
1t
1x

(
f nR u

n
i+ 12
− f nL u

n
i− 12

)
−
1t
1x

(
Jn
i+ 12
− Jn

i− 12

)
, (21)

with Jn
i+ 12
= − (ρD)n

i+ 12

ξni+1−ξ
n
i

1x . L and R indicate the extrapolated values at the left and right face of the control volume. For

a first order upwind scheme, with positive values for velocity, this means φL = φi−1 and φR = φi.
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A predicted value for the velocity is obtained, using the momentum equation,

(ρu)∗i = (ρu)
n
i −

1t
1x

(
(ρu)nR u

n
i+ 12
− (ρu)nL u

n
i− 12

)
−

1t
1x

(
pn
i+ 12
− pn

i− 12

)
+1t

(
δτn

δx

)
i
, (22)

with u∗i =
(ρu)∗i
ρn+1i
. The values for velocity, un+1i = u∗i + u

′

i and pressure p
n+1
i = pni + p

′

i are related through u
′

i+ 12
=

−1t 1
ρn+1
i+ 12

p′i+1−p
′
i

1x .

The constraint is now formulated by requiring ρn+2 = HC (f n+2), or

ρn+1i −1t
ρn+1R un+1

i+ 12
− ρn+1L un+1

i− 12

1x
= HC

f n+1i −1t
f n+1R un+1

i+ 12
− f n+1L un+1

i− 12

1x
−1t

Jn+1
i+ 12
− Jn+1

i− 12

1x

 . (23)

Inserting un+1 = u∗ + u′, yields

ρ∗ + ρ ′ = HC
(
f ∗ + f ′

)
, (24)

with ρ∗ = ρn+1i − 1t
ρn+1R u∗

i+ 12
−ρn+1L u∗

i− 12
1x , f ∗ = f n+1i − 1t

f n+1R u∗
i+ 12
−f n+1L u∗

i− 12
1x + 1t

Jn
i+ 12
−Jn
i− 12

1x , ρ ′ = −1t
ρn+1R u′

i+ 12
−ρn+1L u′

i− 12
1x ,

f ′ = −1t
f n+1R u′

i+ 12
−f n+1L u′

i− 12
1x . (24) can be linearized around f ∗:

ρ∗ + ρ ′ = HC
(
f ∗
)
+
dHC
df

(
f ∗
)
f ′. (25)

Note that the linearization is aNewtonprocedure to solve the non-linear equation. During the iterative procedure, ultimately
the non-linear equation is solved. So, the linearization has no effect at all on the overall accuracy. In system notation, (25)
reads:(

A−
dHC
df

(
f ∗
)
B
)
p′ = RHS, (26)

with RHS = HC
(
f ∗
)
−ρ∗. The dimension of all vectors is the number of grid nodes.Matrices A and B change during iteration,

since the matrices are composed of extrapolated values of density and fuel elements mass, which depend on the sign of the
unknown velocity un+1. The same holds for the RHS, which value also depends on the sign of un+1. This influence is only
secondary, so that a minor assumption can be introduced, still preserving the consistency of the algorithm: calculating
the extrapolated values of ρ and f , based on the sign of u∗, instead of un+1, matrices A and B and vector RHS only need one
calculation per time step, saving computing time. Themonotonicity of the spatial discretization is then in principle no longer
guaranteed and values for mixture fraction outside [0, 1] could be reached, but we have not encountered problems in this
sense so far.

6. Results and discussion

The above described pressure-correction scheme is now applied to a 1D contact discontinuity. A 1D channel is filled with
fuel on one side, and oxidizer on the other side. The densities of fuel and oxidizer are equal here, in order to illustrate the
effects as clearly as possible. The simulations are done in a time-accurate manner, with constant CFL-number, CFL = 0.9,
based on the maximum velocity in the domain.
The test case is purely convective: viscosity and species diffusivity are set to zero (ρD = 0). A velocity of 1m/s is enforced

at the inlet. So the exact velocity is 1 m/s in the entire domain. The initial conditions and the result after 10 time steps on
a grid with spacing 1x = 1 m are shown in Fig. 2. Ideally, the velocity field should remain constant in the entire domain.
However, due to numerical diffusion, by the upwind discretization, a reaction zone is formed, resulting in a zone with lower
density. Sincemass conservation is imposed, the flowmust accelerate towards the outlet, which is the case (Fig. 2 top right).
Spatial discretizationwithout dissipationwould resolve this artefact, but yields non-monotonic results, which is not wanted
in case of a bounded variable, such as density or mixture fraction. A stable solution is found, also at later times. Fig. 3 reveals
that all the states in the domain obey the equation of state in an exact manner, as it should be.
Note that, even with a highly diffusive numerical discretization, a high accuracy is achieved in predicting a correct

behaviour, according to the equation of state. This is due to the fact that the equation of state is a purely algebraic
relationship, and thus independent of discretization in space and time. The presented algorithm can be applied with any
discretization. As an illustration, we perform the 1D test case also with a higher order scheme. For reasons of monotonicity,
higher order accuracy in space is achieved, using a TVD scheme. Two limiter functions are chosen: Roe’s superbee flux limiter
and the minmod limiter. For comparison reasons, the first order upwind scheme is also retained. Higher order accuracy in
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Fig. 2. Density, fuel elements’ mass and velocity: initial field (left) and state after 10 time steps (right) for pure convection of fuel and oxidizer in a straight
channel.

Fig. 3. Predicted states of density vs. fuel elements’ mass during the first 10 time steps for pure convection of fuel and oxidizer in a straight channel:
results exactly correspond to the equation of state (full line).

Fig. 4. Density, fuel elements’ mass and velocity after 10 s: comparison of a first order upwind scheme (left) with a TVD scheme with minmod limiter
(right) for pure convection of fuel and oxidizer in a straight channel.

time is adopted, using a low-storage Runge–Kutta scheme with 4 stages, using standard coefficients, with an evaluation of
the pressure at each stage. The tests were performed using a constant time step of 1t = 0.005 s on a grid with spacing
1x = 0.125 m. Obviously, the representation of the fronts ameliorates (Fig. 4), with the same accuracy in predicting the
equation of state correctly.
For a purely convective test case, there is no absolute length scale. The only non-dimensional parameter is the CFL-

number, relating the time step (1t) and the grid spacing (1x): CFL = uinlet1t/1x. For a reference grid with grid spacing
1xref, the result after t seconds is obtained using nref time steps: t = nref1tref. The result at the same simulated time on a
different grid, with the same, constant CFL, can be found using t = n11t1 with n1/nref = 1tref/1t1 = 1xref/1x1. As such,
there exists a one-to-one relation between simulated time on the reference grid and grid refinement. A longer simulated
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Fig. 5. Time-averaged exit velocity error for the first order upwind scheme and second order TVD scheme with minmod and superbee limiter function.
Demonstration of grid convergence.
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Fig. 6. Left: density, fuel elements’ mass and velocity after 10 swith a TVD schemewith superbee limiter for pure diffusion of fuel and oxidizer in a straight
channel. Right: exit velocity as a function of time for subsequently finer grids.

time corresponds to a finer grid. Fig. 5 shows that the method converges. The depicted error is based on the time-averaged
exit velocity since instantaneous errors on the velocity field, resulting from the numerical discretization, oscillate in time.
To examine the influence of the diffusive term in (6), we use the same 1D test case. The initial profiles for density and

mixture fraction profiles are taken from Fig. 2 (left). The velocity is set to zero at the inlet, but now diffusion is allowed with
ρD = 1 Pa.s. All other settings are the same as in the purely convective problem described above. The results after 10 s
with the higher order TVD scheme with superbee limiter are depicted in Fig. 6. The initially sharp front in mixture fraction
is relaxed because of diffusion. This diffusion results in mixing between fuel and oxidizer, so reaction can take place. Hence,
the lower values of density at the reaction zone. The behaviour of the velocity field can be explained as follows: first, due
to the reaction, the flow accelerates towards the outlet. Second, due to diffusion between the stoichiometric mixture and
fuel (or oxidizer), mass must be transported by convection from the high density side (fuel/oxidizer) to the low density side
(stoichiometric). Again the equation of state is exactly fulfilled. Also, grid refinement results in more accurate predictions,
as can be observed in Fig. 6 (right).

7. Conclusion

In this paper, we applied a novel pressure-correction algorithm, capable of dealing with an arbitrary amount of scalar
conservation equations and a generic equation of state in transient simulations of variable density flows. The pressure-
correction algorithm is characterized by a non-linear equation for the pressure, necessary to obtain conservation of mass
and scalars, together with exact fulfillment of the equation of state. The algorithm was shown to remain stable, even for
interfaces with high density ratios. An efficient implementation in the case of non-premixed combustion, with mixture
fraction as a conserved variable, was described. We showed that the predicted states exactly match the equation of state.
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