
Chapter 1
Multi-Level Quasi-Newton Methods for the
Partitioned Simulation of Fluid-Structure
Interaction

Joris Degroote, Sebastiaan Annerel and Jan Vierendeels

Abstract In previous work, Fourier stability analyses have been performed of
Gauss-Seidel iterations between the flow solver and the structural solver in a parti-
tioned fluid-structure interaction simulation. These analyses of the flow in an elastic
tube demonstrated that only a number of Fourier modes in the error on the interface
displacement are unstable. Moreover, the modes with a low wave number are most
unstable and these modes can be resolved on a coarser grid. Therefore, a new class
of quasi-Newton methods with more than one grid level is introduced. Numerical
experiments show a significant reduction in run time.

1.1 Introduction

Partitioned fluid-structure interaction (FSI) simulationtechniques solve the flow
equations and the structural equations separately. Strongly coupled partitioned tech-
niques enforce the equilibrium of the stress and velocity (or displacement) on the
fluid-structure interface in each time step. Several strongly coupled partitioned tech-
niques are able to couple ‘black-box’ solvers, for example the Interface Block
Quasi-Newton technique with an approximation for the Jacobians from Least-
Squares models (IBQN-LS) [5] and the Interface Quasi-Newton technique with an
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approximation for the Inverse of the Jacobian from a Least-Squares model (IQN-
ILS) [2].

The coupling iterations of strongly coupled partitioned techniques can suffer
from stability issues. Degroote et al. [1, 3] performed a Fourier decomposition of
the error on the interface displacement during Gauss-Seidel iterations. These anal-
yses show that only a fraction of all Fourier modes is unstable, notably the modes
with a low wave number. These unstable modes can be resolved on a coarser grid.
Therefore, the new Multi-Level (ML) coupling techniques presented in this work
use more than one grid level, each with a different number of grid points. Below,
Multi-Level IQN-ILS (ML-IQN-ILS) is derived from IQN-ILS;Multi-Level IBQN-
LS (ML-IBQN-LS) can be derived from IBQN-LS in a similar way.

1.2 Governing equations

A Dirichlet-Neumann decomposition of the fluid-structure interaction problem is
applied. Consequently, the flow and structural solver can berepresented by the func-
tions

y = F (x) and x = S (y), (1.1)

respectively. The vectorx represents the displacement of all nodes on the interface
and the vectory represents the stress on all edges/faces of the interface.

As the multi-level coupling algorithms use several grid levels for the flow equa-
tions and the structural equations, data has to be interpolated between different dis-
cretizations of the fluid-structure interface. Even thoughthe discretization of the in-
terface inside the flow solver and the structural solver depends on the grid level, all
operations of the coupling algorithm are performed on a single grid — the so-called
‘coupling grid’ (see Fig. 1.1) — as the interpolation is hidden inside the solvers. In
this work, this coupling grid is identical to the interface discretization of the finest
fluid grid.

Fig. 1.1 Abstract representa-
tion of coarse (light) and fine
(dark) grid levels in the struc-
tural solver (left) and the flow
solver (right), together with
the coupling grid (centre)

Local radial basis function interpolation is used on the interface [6]. If, for ex-
ample, a stress component has to be interpolated from a fluid grid to the coupling
grid, then three steps are performed for each point of the coupling grid. First, a given
number of points on the fluid grid with the smallest Euclideandistance to the point
of the coupling grid are selected. Then, the interpolation coefficients are calculated,
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usingφ(z) = (1− z)4
+(4z+1) as basis function [6], withz the Euclidean distance

divided by the radius. The plus-sign behind the first term denotes that this term is
zero if 1− z < 0 such thatφ has a compact support. In this work, these first two
steps are performed only once at the beginning of the simulation. Finally, the stress
component is interpolated, using the interpolation coefficients from the second step.

1.3 Coupling algorithm

In this section, the standard IQN-ILS algorithm [2] with onegrid level is first ex-
plained and subsequently extended to the ML-IQN-ILS algorithm. A prime denotes
the Jacobian matrix of a function and a hat refers to an approximation. The output of
a solver is indicated with a tilde. The grid level is indicated with a subscripti, with
the first grid level the coarsest one and thegth grid level the finest one. The coupling
iteration within time stepn+1 is denoted with a superscriptk.

The standard IQN-ILS coupling technique solves the FSI problem reformulated
as a set of nonlinear equations in the interface’s displacement

R(x) = S ◦F (x)−x = 0 (1.2)

by means of quasi-Newton iterations

xk+1 = xk +
̂(

R
′k
)−1(

−rk
)

, (1.3)

using an approximation for the product of the inverse of the Jacobian matrix with the
vector−rk. The residual is calculated asrk = R(xk) = S ◦F (xk)−xk = x̃k −xk.
The coupling iterations in the time step have converged when||rk||2 ≤ εo with εo

the convergence tolerance.
The vector−rk is the difference between the desired residual, i.e.0, and the

current residualrk and it is further denoted as∆r = 0 − rk = −rk. The matrix-
vector product is approximated using information obtainedduring the previous
quasi-Newton iterations. To that end, the matrices

Vk =
[

∆rk−1 ∆rk−2 . . . ∆r1 ∆r0
]

(1.4a)

Wk =
[

∆ x̃k−1 ∆ x̃k−2 . . . ∆ x̃1 ∆ x̃0
]

(1.4b)

are constructed, with∆rm−1 = rm − rm−1 and∆ x̃m−1 = x̃m − x̃m−1 (m = 1, . . . ,k).
These matrices contain the differences between, respectively, residual vectors and
outputs of the structural solver in consecutive coupling iterations. The change of
the residual vector (∆r) is decomposed as a linear combination of the differences
between previous residual vectors

∆r ≈ Vkck (1.5)
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with ck the coefficients of the decomposition. As the matrixVk normally contains
more rows than columns, the decomposition coefficientsck are calculated by solving
a least-squares problem, using a QR-decomposition ofVk. The change of the output
of the structural solver (∆ x̃) that corresponds to the change of the residual (∆r)
is subsequently calculated as a linear combination of the previous changes of the
output of the structural solver (∆ x̃m−1, m = 1, . . . ,k), analogous to Eq. (1.5), giving

∆ x̃ = Wkck. (1.6)

Fromrk = x̃k −xk, it follows that∆r = ∆ x̃−∆x, so

∆x = Wkck −∆r. (1.7)

This can be interpreted as a procedure to calculate the approximation for the product
of the inverse of the Jacobian matrix with the vector∆r =−rk.

Algorithm 1 shows the Multi-Level IQN-ILS (ML-IQN-ILS) algorithm. Line 6
to 13 are the standard IQN-ILS algorithm as described above.Around the standard
algorithm, an additional loop over the grid levels is added (line 3). First, the coupled
solution is calculated on the coarsest grid level. Then, thesolution is transferred to
the next grid level on line 15 to 19, followed by coupling iterations on that grid
level. These steps are subsequently repeated for all grid levels until the solution on
the finest grid has been found. The transfer of the displacement to the following
grid level provides the initial value for the coupling iterations on that grid level. The
variableℓ (line 1) ensures that at least one coupling iteration is performed on each
grid level.

Because the coupling algorithm operates on a coupling grid,the difference be-
tweenr and x̃ in consecutive coupling iterations is always interpolatedto a fixed
number of grid points, regardless of the current grid level.As a result, the modes
that have been generated on a coarse grid level can be used to accelerate the cou-
pling iterations on the finer grid levels. The same least-squares model is used for all
grid levels so the number of columns in the matricesVk andWk increases on each
grid level. Because the matricesVk andWk have to contain at least one column, a
relaxation with a constant factorω (line 7) is performed in the second coupling iter-
ation of each time step. The counterk is only set to zero at the beginning of the time
step (line 1) and not when the coupling iterations on a following grid level start. As
a result, the relaxation step is only performed on the coarsest grid level. However, it
should be noted that the difference betweenr andx̃ in the last coupling iteration on
a certain grid leveli and the first coupling iteration on the following grid leveli+1
should not be added toVk andWk, as these differences are biased because the terms
have been calculated on two different grid levels.

Line 21 to 23 show that synchronization is necessary at the end of the time step.
Once the solution has been found on the finest grid level, all degrees of freedom on
the coarser grid levels have to be corrected.
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Algorithm 1 One time step with the multi-level IQN-ILS (ML-IQN-ILS) algorithm
1: k = ℓ= 0
2: r0

1 = S 1 ◦F 1(x0
1)−x0

1 = x̃0
1−x0

1
3: for i = 1 to g do
4: while ||rk

i ||2 > εi,o or ℓ= 0 do
5: ℓ= 1
6: if k = 0 then
7: xk+1

i = xk
i +ωrk

i
8: else
9: ck = argminck ||Vkck + rk

i ||2
10: xk+1

i = xk
i +Wkck + rk

i
11: end if
12: rk+1

i = S i ◦F i(xk+1
i )−xk+1

i = x̃k+1
i −xk+1

i
13: k = k+1
14: end while
15: if i < g then
16: xk

i+1 = xk
i

17: rk
i+1 = rk

i
18: ℓ= 0
19: end if
20: end for
21: for i = 1 to g−1 do
22: start synchronizingF i andS i with F g andS g

23: end for

1.4 Numerical results

To assess the performance of the multi-level algorithms, the propagation of a pres-
sure wave in a straight flexible tube is simulated [4]. Pressure contours on the fluid-
structure interface are shown in Figure 1.2.

Table 1.1 lists the number of coupling iterations per time step and per grid level,
averaged over the entire simulation, and the relative duration of the simulations.
The coarse grid level contains 34944+1824 degrees of freedom for the flow and the
structure, respectively, while the fine grid level contains2247168+28032 degrees of
freedom. In the simulation with two grid levels, the number of coupling iterations on
the fine grid is reduced by approximately 50% compared to a simulation with a fine
grid only. As the cost of the coupling iterations on the coarse grid level is relatively
small, the duration of the simulation also decreases by approximately 50%.

Fig. 1.2 Pressure contours
(in Pa) on the fluid-structure
interface after 10−3 s (left),
5×10−3 s (centre) and 9×
10−3 s (right)
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Table 1.1 Comparison be-
tween one and two grid levels
for the propagation of a pres-
sure wave in a 3D tube

Algorithm Coarse iters Fine iters Duration

IQN-ILS - 13.2 1.9
ML-IQN-ILS 12.1 7.0 1.0
IBQN-LS - 13.3 2.0
ML-IBQN-LS 12.5 6.6 1.0

1.5 Conclusion

Stability analyses on Gauss-Seidel coupling iterations demonstrated that the Fourier
modes with a low wave number in the error on the interface displacement are most
unstable. The new multi-level algorithms resolve these modes with a low wave num-
ber on a coarser grid. The numerical results show that these multi-level algorithms
can reduce the duration of a partitioned fluid-structure interaction simulation, if the
difference in number of degrees of freedom between the grid levels is sufficient.
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