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Abstract. Flow-induced vibration is an important concern in the design of tube bun-
dles. Due to the coupling of fluid motion and structural motion, instabilities such as
flutter and divergence can arise. Next to the instabilities caused by the coupling of fluid
motion and structural motion, turbulence could cause small amplitude vibrations, which
in turn could give rise to long-term damage. Currently, the dynamical behavior of a tube
in axial flow is studied by splitting the flow forces into inviscid and viscous components.
The inviscid flow forces are determined from potential flow theory while the viscous flow
forces come from empirical formulations.
In this paper, a computational methodology is proposed to improve the accuracy of the
predicted dynamical behaviour. In this methodology partitioned fluid-structure interac-
tion simulations are performed to calculate the free vibration decay of a tube in axial
flow. The tube is initially deformed according to an eigenmode in vacuum. Modal char-
acteristics are then derived from the free vibration decay of the tube surrounded by the
turbulent water flow. To validate this computational methodology a series of experiments
is reproduced. In these experiments the frequency and damping of the fundamental mode
of a solid brass cylinder were measured.
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1 INTRODUCTION

Flow-induced vibration is an important concern in the design of tube bundles, both
in axial-flow as well as cross-flow configurations. Applications with an axial-flow regime
are typically found in nuclear reactors while cross-flow regimes are typically found in
shell-and-tube heat exchangers. This article will focus on axial flow.

Different types of flow-induced instabilities can arise in tube bundles subjected to axial
flow, depending on their fixations. Generally however, due to the coupled fluid-structure
motion, centrifugal fluid forces can trigger a static instability while Coriolis forces can
trigger a dynamic one [1]. Next to the instabilities caused by the coupled motion, small
vibrations are triggered by turbulent fluctuations in the flow. While these vibrations are
not as catastrophic as the ones induced by the coupled fluid-structure motion, they can
damage the structure in the long term.

In order to predict the vibrational behavior of a tube exposed to axial flow, classical
models split the flow forces induced by the motion into an inviscid part and a viscous
part [2]. The inviscid forces can be derived from potential flow theory. They result in a
force proportional to the acceleration (an added mass), a centrifugal force and a Coriolis
force. The viscous (turbulent) forces are based on a linearization of empirically determined
turbulent friction forces. Research on the constants required in these expressions is still
on-going [3]. In cross-flow configurations some authors use (2D) CFD-simulations to
establish the required coefficients [4].

Research based on CFD is mainly concerned with cross-flow regimes, in which vortex
shedding is one of the important mechanisms of flow-induced vibration. Regarding axial
flow a solver was developed for instabilities in laminar flow conditions and later a linearized
solver for turbulent annular flow configurations was developed. The initial solver was
based on a staggered approach. To keep the computation stable with higher added fluid
masses, an estimation of the added mass was afterwards included in the structural solver
[5].

In this paper, modal characteristics of a tube in turbulent water flow will be com-
puted directly from coupled computational fluid mechanics (CFD) and computational
solid mechanics (CSM). To assess the accuracy of the proposed methodology, the results
are compared to experimental results available in open literature.

2 METHODOLOGY

Essentially, modal characteristics in this paper are determined from unsteady compu-
tations of the free decay of initially deformed structures [6]. The computations are split
into four steps:
STEP 1: Computation of eigenmodes in vacuum
Initially the eigenmodes in vacuum are computed with a finite element solver, searching
eigenmodes of:

(K −Mω2)xi = 0 (1)
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with K the stiffness matrix, M the mass matrix and xi the displacements.
STEP 2: Initialization of the fluid-structure interaction (FSI) simulation
The cylinder is then deformed according to the previously determined fundamental mode
shape. The steady-state flow around the deformed cylinder is computed, thus solving the
steady-state mass balance and Navier-Stokes equations for an incompressible fluid:

∇ · v
f = 0 (2)

ρf (vf · ∇vf ) = −∇p+ µf∇ · ∇vf + ff (3)

in which p stands for pressure, vf for fluid velocity, ρf for fluid density, µf for fluid vis-
cosity.
STEP 3: Unsteady FSI-calculation
The deformed structure and the flow field serve as initial state in an unsteady FSI-
simulation. In this simulation both the kinematic and dynamic equations need to be
satisfied:

d
s = df (4)

−τs · ns = τf · nf (5)

with ds, df the displacement of the interface on the structural side and on the fluid side
respectively, τf , τs the stress on the interface due to the fluid and due to the structure
and ns, nf the surface normals on the fluid-structure interface of the structural and the
fluid domain. The Newtonian fluid flow itself is governed by the incompressible form of
the conservation of mass and the Navier-Stokes equations:

∇ · v
f = 0 (6)

ρf

(
∂vf

∂t
+ vf · ∇vf

)
= −∇p+ µf∇ · ∇vf (7)

The structural displacement is governed by Newton’s second law:

ρs
∂2ds

∂t2
= ∇ · τs (8)

with ρs the solid density, τs the stress tensor, which is determined using the constitutive
equation of the material.
STEP 4: Extraction of the modal characteristics
From the previous step the free vibration decay in a fluid of the original in vacuum mode
is available. This vibration can be developed into series of N decaying modes:

d
cl,i(z, t) ≈ dcl,i,est(z, t) =

N∑
i=1

ai(z) exp(−2πfiζit) sin(2π
√
1− ζ2

i
fit+ θi) (9)

with ai(z) the mode shape, ζi the modal damping ratio, fi the frequency and θi the phase
angle of mode i.
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3 SIMULATION DETAILS

The geometry computed in this paper is based on the geometry described in [7]. It consists
of a solid brass cylinder mounted in a water-conveying pipe. The geometrical parameters
as well as material properties are listed in Table 1. The cylinder was pre-tensioned with
648 N . In the experiments the water speed ranged from 10 m/s to 30 m/s.

Table 1: Geometrical parameters and material properties

Geometrical parameters
cylinder diameter 0.0127 m

cylinder length 1.19 m

hydraulic diameter 0.0127 m

Material properties
density of brass 8400 kg/m3

Young’s modulus of brass 107 GPa

Poisson’s ratio of brass 0.34
water density 1000 kg/m3

water viscosity 0.001 Pa.s

The flow is thus turbulent with Reynolds numbers between 124000 and 372000. It is
computed by solving URANS-equations, with the k − ω SST model. The influence of
different inlet turbulent intensities is studied. As the cylinder is moving, the flow equations
are cast in the ALE (arbitrary Lagrangian-Eulerian) form. The mesh motion is computed
by iteratively solving a system of springs. The flow solver uses a 2nd-order discretization,
both in space and in time.
The CSM-calculation is a finite element calculation, which uses 2nd-order elements and
the Hilber-Hughes-Taylor time-integrator, which is also of 2nd-order accuracy. The fluid-
structure coupling is computed with the IQN-ILS algorithm [8].

4 CONVERGENCE STUDY

4.1 Number of modes required in the free-vibration fitting

In the case, studied in this article, the mode shapes of the coupled fluid-structure are very
similar to ones of the pure structural problem. As a result, only one mode is required to
predict the decay of the fundamental mode. Fitting with one mode already gave R2-values
of more than 99.9%.
The goodness of fit can also be seen on Figure 1, which plots the reconstructed displace-
ment as a function of time, together with the error to the original displacement. The
error graph shows peaks probably belonging to a small 2nd-mode contribution.
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Figure 1: Reconstructed displacements in function of time and axial coordinate, colored by the error to
the original signal

4.2 Influence of time step size

If the time step in the simulations is chosen too large, the modal damping ratio is typically
overestimated [6]. However, in the case studied here, neither the modal damping ratio nor
the natural frequency were very sensitive to the time step size, as can be seen in Figure
2. In the remainder of the article a time step size of 0.2 ms is used, as it reduces the
computational cost.

4.3 Grid convergence

The grid used for the finite-element calculation consists of 400 quadratic 3D-elements.
Grid refinements showed no significant change in eigenmodes or eigenvalues.
The mesh used in the CFD-calculation consists of 235000 cells. The first grid point
is located in the logarithmic region, as its y+-value is 200 for a water velocity of 30
m/s. Modal characteristics were also determined with a mesh consisting of only 62500
cells. Neither the frequency nor the damping showed appreciable difference with the mesh
normally used.

5 RESULTS

In this section the influence of inlet conditions, water velocity and molecular viscosity is
discussed.
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Figure 2: Influence of the time step size on the natural frequency (left graph) and the modal damping
ratio (right graph)

5.1 Influence of inlet conditions

In order to solve the (U)RANS-equations, two additional turbulent quantities are required
at the inlet. They will alter the turbulent (eddy) viscosity downstream, which influences
the modal damping.
As the ratio of the channel length over its hydraulic diameter (Dh) is relatively high, the
flow becomes already fully developed at the beginning of the channel. From Figure 5.1,
the flow is fully developed after approximately 20 Dh, while the entire channel length
is approximately 95 Dh. Changes in inlet turbulence characteristics only modifies the
turbulent viscosity in the beginning of the channel. This is in agreement with experimental
work performed by Mulcahy [9].
These changes in turbulent viscosity do not result in significant changes of modal charac-
teristics (on the order of 1 %), as they are only occurring in a limited part of the domain
and the modal shape is very small in that part.

5.2 Influence of water velocity

If the flow velocity is high enough, divergence or flutter of the cylinder could occur.
Conventional theories predicting flow-induced vibration often recast the flow velocity in
a dimensionless form [2]:

v
f,n =

(
EI

ρfA

)−0.5

vfL (10)

with I the second moment of inertia and E the Young’s modulus of elasticity. For a
flow velocity of 30 m/s this dimensionless flow velocity is still only 1.1. Flow instabilities
typically occur for non-dimensional flow velocities greater than 2-6 [2].
While the flow velocity is not high enough to trigger flow-induced instabilities, it does
change the modal characteristics, as can be seen in Table 2. An increase of flow veloc-
ity leads to lower natural frequencies and higher modal damping ratios. The decrease in
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Figure 3: Influence of the inlet turbulence length scale (left graph) and turbulence intensity (right graph)
on the turbulent viscosity at Dh/8 from the cylinder

Table 2: Natural frequency and modal damping ratio of the ground mode vibration as a function of flow
velocity

computed values experimental values [7]
vf (m/s) fn (s−1) ζn (−) fn (s−1) ζn (−)
10 28.9 0.014 27.9 0.013
20 28.7 0.022 27.7 0.021
30 28.4 0.030 27.5 0.030

natural frequency can be explained by an increase of centrifugal forces acting on the cylin-
der, while the increase in modal damping can be attributed to the increase of turbulent
viscosity. Table 2 further shows a good agreement between the computed characteristics
and the experimentally determined characteristics.
While current theories have similar reliability on frequency prediction compared to the
calculations in this article, they have to include an empirical friction correlation to predict
the modal damping ratio.

5.3 Influence of molecular viscosity

The molecular viscosity is not exactly known as the water temperature is not well known.
Therefore, different computations with a molecular viscosity between 0.0005 Pa.s and
0.002 Pa.s have been carried out.
For a flow velocity of 30 m/s, the turbulent viscosity is 431 times the molecular one. The
molecular viscosity will thus only affect the modal characteristics because it alters its
turbulent counterpart.
Table 3 lists the modal characteristics and the average turbulent viscosity for different
molecular viscosities. The molecular viscosity has almost no influence on the natural
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Table 3: Modal characteristics for different molecular viscosities

µf (Pa.s) fn (s−1) ζn (−) µt(Pa.s)
0.0005 28.4 0.0281 0.412
0.001 28.4 0.0303 0.431
0.002 28.3 0.0331 0.450

frequency. However, it influences the modal damping ratio, through changes in turbulent
viscosity.

6 CONCLUSION

Modal characteristics are computed purely numerically in this article. It has the advantage
over conventional methods that it does not require specific empirical input. The results
obtained with the method, presented in this article, have been compared and validated
with experiments available in open literature.
The calculations showed that the influence of inlet conditions decayed after 20 Dh. This
observation is in accordance with experimental findings. An increase in flow speed gave
slightly lower frequencies and significant higher modal damping ratios. Changes in molec-
ular viscosity resulted in slightly different turbulent viscosities and thus slightly different
modal damping ratios.
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[2] M. Päıdoussis, Fluid-Structure Interactions: Slender Structures and Axial Flow. Aca-
demic Press, 2004.

[3] S. Ersdal and O. M. Faltinsen, “Normal forces on cylinders in near-axial flow,” Journal

of Fluids and Structures, vol. 22, no. 8, pp. 1057–1077, 2006.

[4] M. Hassan, A. Gerber, and H. Omar, “Numerical estimation of fluidelastic instability
in tube arrays,” Journal of Pressure Vessel Technology-Transactions of the ASME,
vol. 132, no. 4, 2010.

[5] F. Belanger, M. P. Paidoussis, and E. Delangre, “Time-marching analysis of fluid-
coupled systems with large added-mass,” AIAA Journal, vol. 33, no. 4, pp. 752–757,
1995.

[6] J. De Ridder, J. Degroote, K. Van Tichelen, P. Schuurmans, and J. Vierendeels,
“Modal characteristics of a flexible cylinder in turbulent axial flow from numerical
simulations,” Journal of Fluids and Structures, in review.

8

675



J. DE RIDDER, J. DEGROOTE, K. VAN TICHELEN, P. SCHUURMANS AND J. VIERENDEELS

[7] S. Chen and M. Wambsgan, “Parallel-flow-induced vibration of fuel rods,” Nuclear

Engineering and Design, vol. 18, no. 2, pp. 253–278, 1972.

[8] J. Degroote, K. J. Bathe, and J. Vierendeels, “Performance of a new partitioned
procedure versus a monolithic procedure in fluid-structure interaction,” Computers

and Structures, vol. 87, no. 11-12, pp. 793–801, 2009.

[9] T. M. Mulcahy, T. T. Yeh, and A. J. Miskevics, “Turbulence and rod vibrations in an
annular region with upstream disturbances,” Journal of Sound and Vibration, vol. 69,
no. 1, pp. 59–69, 1980.

9

676




