89 research outputs found
Abdominal Actinomycosis misdiagnosed as liposarcoma
Actinomycosis is an uncommon, endogenous, and chronic infection with varied and nonspecific clinical features such as abdominal, pelvic or cervical masses, ulcerative lesions, abscesses, draining fistula, fibrosis, and constitutional symptoms. The disease ensues when the bacteria disrupt the mucosal barrier, invade, and spread throughout interfascial planes. Currently, the diagnosis of actinomycosis is challenging because of its very low frequency and depending on the clinical presentation it may masquerade malignancies. Therapy consists initially in intravenous penicillin, followed by an oral regimen that may be extended until a year of treatment. A timely diagnosis is crucial to avoid extensive therapeutic attempt as surgery. However, a biopsy or drainage of abscesses and fistula’s tract may be required not only as a diagnostic procedure as part of the therapy. We report the case of a 72-year-old woman with an abdominal mass initially misdiagnosed as a liposarcoma. A second biopsy of a skin lesion of the abdominal wall made the diagnosis of actinomycosis, avoiding a major surgical procedure. The patient was treated with a long-term course of antibiotics with favorable outcome. Liposarcoma was ruled out after the patient’s full recovery with antibiotics and the misdiagnosis was credit to the overconfidence on the immunohistochemical positivity to MDM2
Biodiversidade brasileira como fonte da inovação farmacêutica: uma nova esperança?
Bibliografia: p. 81-89A diversidade biológica é constantemente referida como uma das possíveis fontes de vantagem competitiva para o Brasil, sendo a indústria farmacêutica um dos setores com maior potencial para seu aproveitamento. Entretanto, na última década, a ascensão dessa indústria no país passou ao largo do patrimônio genético, o que pode ser atribuído à complexa regulação de acesso a esses recursos e ao redirecionamento das metodologias de descoberta de medicamentos no mundo. Esse cenário está se modificando com a redescoberta dos produtos naturais pela ciência moderna, o amadurecimento das estratégias de inovação das empresas farmacêuticas nacionais e, principalmente, a fixação de um novo marco regulatório, que pretende incentivar a geração de valor sustentável a partir da biodiversidade brasileira.Biologic diversity is often referred to as one of Brazil's competitive advantages, specially for the development of its pharmaceutical industry. Nevertheless, on the last decade, this industry has risen based on generic medicines, not using the country's genetic resources. The paper discusses two complementary reasons for that: regulatory uncertainty and the global swift to random screening techniques. For the future, it is argued that the Brazil's biodiversity may return to the center of the agenda due to a new regulatory framework, alongside with the recent re-emergence of natural products for drug discovery and the Brazilian companies need for alternative innovation strategies
SARS-CoV-2 uses CD4 to infect T helper lymphocytes
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS-CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.</p
SARS-CoV-2 uses CD4 to infect T helper lymphocytes
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS-CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.</p
High anti-SARS-CoV-2 antibody seroconversion rates before the second wave in Manaus, Brazil, and the protective effect of social behaviour measures: results from the prospective DETECTCoV-19 cohort
Background: The city of Manaus, Brazil, has seen two collapses of the health system due to the COVID-19 pandemic. We report anti-SARS-CoV-2 nucleocapsid IgG antibody seroconversion rates and associated risk factors in Manaus residents before the second wave of the epidemic in Brazil. Methods: A convenience sample of adult (aged ≥18 years) residents of Manaus was recruited through online and university website advertising into the DETECTCoV-19 study cohort. The current analysis of seroconversion included a subgroup of DETECTCoV-19 participants who had at least two serum sample collections separated by at least 4 weeks between Aug 19 and Oct 2, 2020 (visit 1), and Oct 19 and Nov 27, 2020 (visit 2). Those who reported (or had no data on) having a COVID-19 diagnosis before visit 1, and who were positive for anti-SARS-CoV-2 nucleocapsid IgG antibodies at visit 1 were excluded. Using an in-house ELISA, the reactivity index (RI; calculated as the optical density ratio of the sample to the negative control) for serum anti-SARS-CoV-2 nucleocapsid IgG antibodies was measured at both visits. We calculated the incidence of seroconversion (defined as RI values ≤1·5 at visit 1 and ≥1·5 at visit 2, and a ratio >2 between the visit 2 and visit 1 RI values) during the study period, as well as incidence rate ratios (IRRs) through cluster-corrected and adjusted Poisson regression models to analyse associations between seroconversion and variables related to sociodemographic characteristics, health access, comorbidities, COVID-19 exposure, protective behaviours, and symptoms. Findings: 2496 DETECTCoV-19 cohort participants returned for a follow-up visit between Oct 19 and Nov 27, 2020, of whom 204 reported having COVID-19 before the first visit and 24 had no data regarding previous disease status. 559 participants were seropositive for anti-SARS-CoV-2 nucleocapsid IgG antibodies at baseline. Of the remaining 1709 participants who were seronegative at baseline, 71 did not meet the criteria for seroconversion and were excluded from the analyses. Among the remaining 1638 participants who were seronegative at baseline, 214 showed seroconversion at visit 2. The seroconversion incidence was 13·06% (95% CI 11·52–14·79) overall and 6·78% (5·61–8·10) for symptomatic seroconversion, over a median follow-up period of 57 days (IQR 54–61). 48·1% of seroconversion events were estimated to be asymptomatic. The sample had higher proportions of affluent and higher-educated people than those reported for the Manaus city population. In the fully adjusted and corrected model, risk factors for seroconversion before visit 2 were having a COVID-19 case in the household (IRR 1·49 [95% CI 1·21–1·83]), not wearing a mask during contact with a person with COVID-19 (1·25 [1·09–1·45]), relaxation of physical distancing (1·31 [1·05–1·64]), and having flu-like symptoms (1·79 [1·23–2·59]) or a COVID-19 diagnosis (3·57 [2·27–5·63]) between the first and second visits, whereas working remotely was associated with lower incidence (0·74 [0·56–0·97]). Interpretation: An intense infection transmission period preceded the second wave of COVID-19 in Manaus. Several modifiable behaviours increased the risk of seroconversion, including non-compliance with non-pharmaceutical interventions measures such as not wearing a mask during contact, relaxation of protective measures, and non-remote working. Increased testing in high-transmission areas is needed to provide timely information about ongoing transmission and aid appropriate implementation of transmission mitigation measures. Funding: Ministry of Education, Brazil; Fundação de Amparo à Pesquisa do Estado do Amazonas; Pan American Health Organization (PAHO)/WHO.World Health OrganizationRevisión por pare
MAMMALS IN PORTUGAL : A data set of terrestrial, volant, and marine mammal occurrences in P ortugal
Mammals are threatened worldwide, with 26% of all species being includedin the IUCN threatened categories. This overall pattern is primarily associatedwith habitat loss or degradation, and human persecution for terrestrial mam-mals, and pollution, open net fishing, climate change, and prey depletion formarine mammals. Mammals play a key role in maintaining ecosystems func-tionality and resilience, and therefore information on their distribution is cru-cial to delineate and support conservation actions. MAMMALS INPORTUGAL is a publicly available data set compiling unpublishedgeoreferenced occurrence records of 92 terrestrial, volant, and marine mam-mals in mainland Portugal and archipelagos of the Azores and Madeira thatincludes 105,026 data entries between 1873 and 2021 (72% of the data occur-ring in 2000 and 2021). The methods used to collect the data were: live obser-vations/captures (43%), sign surveys (35%), camera trapping (16%),bioacoustics surveys (4%) and radiotracking, and inquiries that represent lessthan 1% of the records. The data set includes 13 types of records: (1) burrowsjsoil moundsjtunnel, (2) capture, (3) colony, (4) dead animaljhairjskullsjjaws, (5) genetic confirmation, (6) inquiries, (7) observation of live animal (8),observation in shelters, (9) photo trappingjvideo, (10) predators dietjpelletsjpine cones/nuts, (11) scatjtrackjditch, (12) telemetry and (13) vocalizationjecholocation. The spatial uncertainty of most records ranges between 0 and100 m (76%). Rodentia (n=31,573) has the highest number of records followedby Chiroptera (n=18,857), Carnivora (n=18,594), Lagomorpha (n=17,496),Cetartiodactyla (n=11,568) and Eulipotyphla (n=7008). The data setincludes records of species classified by the IUCN as threatened(e.g.,Oryctolagus cuniculus[n=12,159],Monachus monachus[n=1,512],andLynx pardinus[n=197]). We believe that this data set may stimulate thepublication of other European countries data sets that would certainly contrib-ute to ecology and conservation-related research, and therefore assisting onthe development of more accurate and tailored conservation managementstrategies for each species. There are no copyright restrictions; please cite thisdata paper when the data are used in publications.info:eu-repo/semantics/publishedVersio
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4
While the increasing availability of global databases on ecological communities has advanced our knowledge
of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In
the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of
Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus
crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced
environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian
Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by
2050. This means that unless we take immediate action, we will not be able to establish their current status,
much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates
Aim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis).
Time period: Tree-inventory plots established between 1934 and 2019.
Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm.
Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield.
Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes.
Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests.
Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types
Geography and ecology shape the phylogenetic composition of Amazonian tree communities
AimAmazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.LocationAmazonia.TaxonAngiosperms (Magnoliids; Monocots; Eudicots).MethodsData for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.ResultsIn the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.Main ConclusionNumerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions
- …