42 research outputs found

    First evidence of established populations of the taiga tick Ixodes persulcatus (Acari: Ixodidae) in Sweden

    Get PDF
    Background: The tick species Ixodes ricinus and I. persulcatus are of exceptional medical importance in the western and eastern parts, respectively, of the Palaearctic region. In Russia and Finland the range of I. persulcatus has recently increased. In Finland the first records of I. persulcatus are from 2004. The apparent expansion of its range in Finland prompted us to investigate if I. persulcatus also occurs in Sweden. Methods: Dog owners and hunters in the coastal areas of northern Sweden provided information about localities where ticks could be present. In May-August 2015 we used the cloth-dragging method in 36 localities potentially harbouring ticks in the Bothnian Bay area, province Norrbotten (NB) of northern Sweden. Further to the south in the provinces Vasterbotten (VB) and Uppland (UP) eight localities were similarly investigated. Results: Ixodes persulcatus was detected in 9 of 36 field localities in the Bothnian Bay area. Nymphs, adult males and adult females (n = 46 ticks) of I. persulcatus were present mainly in Alnus incana - Sorbus aucuparia - Picea abies - Pinus sylvestris vegetation communities on islands in the Bothnian Bay. Some of these I. persulcatus populations seem to be the most northerly populations so far recorded of this species. Dog owners asserted that their dogs became tick-infested on these islands for the first time 7-8 years ago. Moose (Alces alces), hares (Lepus timidus), domestic dogs (Canis lupus familiaris) and ground-feeding birds are the most likely carriers dispersing I. persulcatus in this area. All ticks (n = 124) from the more southern provinces of VB and UP were identified as I. ricinus. Conclusions: The geographical range of the taiga tick has recently expanded into northern Sweden. Increased information about prophylactic, anti-tick measures should be directed to people living in or visiting the coastal areas and islands of the Baltic Bay.Peer reviewe

    VectorNet Data Series 3: Culicoides Abundance Distribution Models for Europe and Surrounding Regions

    Get PDF
    This is the third in a planned series of data papers presenting modelled vector distributions produced during the ECDC and EFSA funded VectorNet project. The data package presented here includes those Culicoides vectors species first modelled in 2015 as part of the VectorNet gap analysis work namely C. imicola, C. obsoletus, C. scoticus, C. dewulfi, C. chiopterus, C. pulicaris, C. lupicaris, C. punctatus, and C. newsteadi. The known distributions of these species within the Project area (Europe, the Mediterranean Basin, North Africa, and Eurasia) are currently incomplete to a greater or lesser degree. The models are designed to fill the gaps with predicted distributions, to provide a) first indication of vector species distributions across the project geographical extent, and b) assistance in targeting surveys to collect distribution data for those areas with no field validated information. The models are based on input data from light trap surveillance of adult Culicoides across continental Europe and surrounding regions (71.8°N –33.5°S, – 11.2°W – 62°E), concentrated in Western countries, supplemented by transect samples in eastern and northern Europe. Data from central EU are relatively sparse.Peer reviewe

    Publishing data to support the fight against human vector-borne diseases

    Get PDF
    Vector-borne diseases are responsible for more than 17% of human cases of infectious diseases. In most situations, effective control of debilitating and deadly vector-bone diseases (VBDs), such as malaria, dengue, chikungunya, yellow fever, Zika and Chagas requires up-to-date, robust and comprehensive information on the presence, diversity, ecology, bionomics and geographic spread of the organisms that carry and transmit the infectious agents. Huge gaps exist in the information related to these vectors, creating an essential need for campaigns to mobilise and share data. The publication of data papers is an effective tool for overcoming this challenge. These peer-reviewed articles provide scholarly credit for researchers whose vital work of assembling and publishing well-described, properly-formatted datasets often fails to receive appropriate recognition. To address this, GigaScience 's sister journal GigaByte partnered with the Global Biodiversity Information Facility (GBIF) to publish a series of data papers, with support from the Special Programme for Research and Training in Tropical Diseases (TDR), hosted by the World Health Organisation (WHO). Here we outline the initial results of this targeted approach to sharing data and describe its importance for controlling VBDs and improving public health

    Optimizing denominator data estimation through a multimodel approach

    Get PDF
    To assess the risk of (zoonotic) disease transmission in developing countries, decision makers generally rely on distribution estimates of animals from survey records or projections of historical enumeration results. Given the high cost of large-scale surveys, the sample size is often restricted and the accuracy of estimates is therefore low, especially when spatial high-resolution is applied. This study explores possibilities of improving the accuracy of livestock distribution maps without additional samples using spatial modelling based on regression tree forest models, developed using subsets of the Uganda 2008 Livestock Census data, and several covariates. The accuracy of these spatial models as well as the accuracy of an ensemble of a spatial model and direct estimate was compared to direct estimates and “true” livestock figures based on the entire dataset. The new approach is shown to effectively increase the livestock estimate accuracy (median relative error decrease of 0.166-0.037 for total sample sizes of 80-1,600 animals, respectively). This outcome suggests that the accuracy levels obtained with direct estimates can indeed be achieved with lower sample sizes and the multimodel approach presented here, indicating a more efficient use of financial resource
    corecore