36 research outputs found

    Draft genome sequences of four citrobacter isolates recovered from wild australian shorebirds

    Get PDF
    Citrobacter is a ubiquitous bacterial genus whose members inhabit a variety of niches. Some species are clinically important for both antimicrobial resistance (AMR) carriage and as the cause of nosocomial infections. Surveillance of Citrobacter species in the environment can provide indicators of the spread of AMR genes outside clinical spaces. In this study, we present draft genome sequences of four Citrobacter isolates obtained from three species of wild Australian shorebirds. Copyright © 2021 Smith et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license

    In silico serotyping of E. coli from short read data identifies limited novel O-loci but extensive diversity of O:H serotype combinations within and between pathogenic lineages.

    Get PDF
    The lipopolysaccharide (O) and flagellar (H) surface antigens of Escherichia coli are targets for serotyping that have traditionally been used to identify pathogenic lineages. These surface antigens are important for the survival of E. coli within mammalian hosts. However, traditional serotyping has several limitations, and public health reference laboratories are increasingly moving towards whole genome sequencing (WGS) to characterize bacterial isolates. Here we present a method to rapidly and accurately serotype E. coli isolates from raw, short read WGS data. Our approach bypasses the need for de novo genome assembly by directly screening WGS reads against a curated database of alleles linked to known and novel E. coli O-groups and H-types (the EcOH database) using the software package srst2. We validated the approach by comparing in silico results for 197 enteropathogenic E. coli isolates with those obtained by serological phenotyping in an independent laboratory. We then demonstrated the utility of our method to characterize isolates in public health and clinical settings, and to explore the genetic diversity of >1500 E. coli genomes from multiple sources. Importantly, we showed that transfer of O- and H-antigen loci between E. coli chromosomal backbones is common, with little evidence of constraints by host or pathotype, suggesting that E. coli 'strain space' may be virtually unlimited, even within specific pathotypes. Our findings show that serotyping is most useful when used in combination with strain genotyping to characterize microevolution events within an inferred population structure

    Co-circulation of Multidrug-resistant Shigella Among Men Who Have Sex With Men in Australia.

    Get PDF
    BACKGROUND: In urban Australia, the burden of shigellosis is either in returning travelers from shigellosis-endemic regions or in men who have sex with men (MSM). Here, we combine genomic data with comprehensive epidemiological data on sexual exposure and travel to describe the spread of multidrug-resistant Shigella lineages. METHODS: A population-level study of all cultured Shigella isolates in the state of Victoria, Australia, was undertaken from 1 January 2016 through 31 March 2018. Antimicrobial susceptibility testing, whole-genome sequencing, and bioinformatic analyses of 545 Shigella isolates were performed at the Microbiological Diagnostic Unit Public Health Laboratory. Risk factor data on travel and sexual exposure were collected through enhanced surveillance forms or by interviews. RESULTS: Rates of antimicrobial resistance were high, with 17.6% (95/541) and 50.6% (274/541) resistance to ciprofloxacin and azithromycin, respectively. There were strong associations between antimicrobial resistance, phylogeny, and epidemiology. Specifically, 2 major MSM-associated lineages were identified: a Shigellasonnei lineage (n = 159) and a Shigella flexneri 2a lineage (n = 105). Of concern, 147/159 (92.4%) of isolates within the S. sonnei MSM-associated lineage harbored mutations associated with reduced susceptibility to recommended oral antimicrobials: namely, azithromycin, trimethoprim-sulfamethoxazole, and ciprofloxacin. Long-read sequencing demonstrated global dissemination of multidrug-resistant plasmids across Shigella species and lineages, but predominantly associated with MSM isolates. CONCLUSIONS: Our contemporary data highlight the ongoing public health threat posed by resistant Shigella, both in Australia and globally. Urgent multidisciplinary public health measures are required to interrupt transmission and prevent infection

    South Asia as a Reservoir for the Global Spread of Ciprofloxacin-Resistant Shigella sonnei: A Cross-Sectional Study.

    Get PDF
    BACKGROUND: Antimicrobial resistance is a major issue in the Shigellae, particularly as a specific multidrug-resistant (MDR) lineage of Shigella sonnei (lineage III) is becoming globally dominant. Ciprofloxacin is a recommended treatment for Shigella infections. However, ciprofloxacin-resistant S. sonnei are being increasingly isolated in Asia and sporadically reported on other continents. We hypothesized that Asia is a primary hub for the recent international spread of ciprofloxacin-resistant S. sonnei. METHODS AND FINDINGS: We performed whole-genome sequencing on a collection of 60 contemporaneous ciprofloxacin-resistant S. sonnei isolated in four countries within Asia (Vietnam, n = 11; Bhutan, n = 12; Thailand, n = 1; Cambodia, n = 1) and two outside of Asia (Australia, n = 19; Ireland, n = 16). We reconstructed the recent evolutionary history of these organisms and combined these data with their geographical location of isolation. Placing these sequences into a global phylogeny, we found that all ciprofloxacin-resistant S. sonnei formed a single clade within a Central Asian expansion of lineage III. Furthermore, our data show that resistance to ciprofloxacin within S. sonnei may be globally attributed to a single clonal emergence event, encompassing sequential gyrA-S83L, parC-S80I, and gyrA-D87G mutations. Geographical data predict that South Asia is the likely primary source of these organisms, which are being regularly exported across Asia and intercontinentally into Australia, the United States and Europe. Our analysis was limited by the number of S. sonnei sequences available from diverse geographical areas and time periods, and we cannot discount the potential existence of other unsampled reservoir populations of antimicrobial-resistant S. sonnei. CONCLUSIONS: This study suggests that a single clone, which is widespread in South Asia, is likely driving the current intercontinental surge of ciprofloxacin-resistant S. sonnei and is capable of establishing endemic transmission in new locations. Despite being limited in geographical scope, our work has major implications for understanding the international transfer of antimicrobial-resistant pathogens, with S. sonnei acting as a tractable model for studying how antimicrobial-resistant Gram-negative bacteria spread globally

    Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events.

    Get PDF
    The emergence of multidrug-resistant (MDR) typhoid is a major global health threat affecting many countries where the disease is endemic. Here whole-genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies a single dominant MDR lineage, H58, that has emerged and spread throughout Asia and Africa over the last 30 years. Our analysis identifies numerous transmissions of H58, including multiple transfers from Asia to Africa and an ongoing, unrecognized MDR epidemic within Africa itself. Notably, our analysis indicates that H58 lineages are displacing antibiotic-sensitive isolates, transforming the global population structure of this pathogen. H58 isolates can harbor a complex MDR element residing either on transmissible IncHI1 plasmids or within multiple chromosomal integration sites. We also identify new mutations that define the H58 lineage. This phylogeographical analysis provides a framework to facilitate global management of MDR typhoid and is applicable to similar MDR lineages emerging in other bacterial species

    An extended genotyping framework for Salmonella enterica serovar Typhi, the cause of human typhoid.

    Get PDF
    The population of Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, exhibits limited DNA sequence variation, which complicates efforts to rationally discriminate individual isolates. Here we utilize data from whole-genome sequences (WGS) of nearly 2,000 isolates sourced from over 60 countries to generate a robust genotyping scheme that is phylogenetically informative and compatible with a range of assays. These data show that, with the exception of the rapidly disseminating H58 subclade (now designated genotype 4.3.1), the global S. Typhi population is highly structured and includes dozens of subclades that display geographical restriction. The genotyping approach presented here can be used to interrogate local S. Typhi populations and help identify recent introductions of S. Typhi into new or previously endemic locations, providing information on their likely geographical source. This approach can be used to classify clinical isolates and provides a universal framework for further experimental investigations

    Twenty-six years of enteric fever in Australia: an epidemiological analysis of antibiotic resistance

    No full text
    Objectives: To determine incidence and trends in antibiotic resistance in Australian Salmonella enterica subspecies enterica serovars Typhi (S. Typhi) and Paratyphi (S. Paratyphi) isolates over the past 26 years.\ud \ud Design: A retrospective analysis of consecutive microbiologically confirmed enteric fever isolates.\ud \ud Participants and setting: All S. Typhi and S. Paratyphi isolates from patients diagnosed with enteric fever in Australia between 1985 and 2010.\ud \ud Main outcome measures: Incidence and variation in antibiotic resistance over time and according to country of origin.\ud \ud Results: We analysed 2551 isolates, which originated from 74 countries or regions, mainly India (33%) and Indonesia (22%). The incidence among Australian residents increased from four to five before 2003 to seven cases per million person-years after 2003. Multidrug resistance (chloramphenicol, ampicillin, trimethoprim) and nalidixic acid resistance emerged rapidly from the early 1990s, with nalidixic acid resistance increasing to 70% in 2009–2010, while multidrug resistance was relatively stable at between 4% and 11%. Nalidixic acid and multidrug resistance rates are highest in isolates from the Indian subcontinent. Some countries in South-East Asia, such as Indonesia, had very low rates of resistance; however, this varied across the region.\ud \ud Conclusions: Nalidixic acid resistance has become widespread in enteric fever isolates from the Indian subcontinent and some parts of South-East Asia, justifying the use of ceftriaxone or azithromycin rather than ciprofloxacin as first-line treatment. However, resistance in some countries remains rare, potentially allowing treatment to be adjusted according to country of origin.\u

    Double-locus sequence typing using pora and peb1a for epidemiological studies of campylobacter jejuni

    No full text
    Campylobacter jejuni is the leading cause of foodborne bacterial gastroenteritis worldwide. Bacterial typing schemes play an important role in epidemiological investigations to trace the source and route of transmission of the infectious agent by identifying outbreak and differentiating among sporadic infections. In this study, a double-locus sequence typing (dlst) scheme for c. Jejuni based on concatenated partial sequences of pora and peb1a genes is proposed. The dlst scheme was validated using 50 clinical and environmental c. Jejuni strains isolated from human (c5, h, h15-h19), chicken (ch1-ch15), water (w2-w17), and ovine samples (ov1-ov6). The scheme was found to be highly discriminatory (discrimination index [di]=0.964) and epidemiologically concordant based on c. Jejuni strains studied. The dlst showed discriminatory power above 0.95 and excellent congruence to multilocus sequence typing and can be recommended as a rapid and low-cost typing scheme for epidemiological investigation of c. Jejuni. It is suggested that the dlst scheme is suitable for identification of outbreak strains and differentiation of the sporadic infection strains

    Increasing Antimicrobial Resistance in Nontyphoidal Salmonella Isolates in Australia from 1979 to 2015

    No full text
    Australia has high and increasing rates of salmonellosis. To date, the serovar distribution and associated antimicrobial resistance (AMR) patterns of nontyphoidal Salmonella enterica (NTS) in Australia have not been assessed. Such information provides critical knowledge about AMR in the food chain and informs decisions about public health. We reviewed longitudinal data on NTS in two Australian states over a 37-year period, between 1979 and 2015, and antimicrobial resistance since 1984. Overall, 17% of isolates were nonsusceptible to at least one antimicrobial, 4.9% were nonsusceptible to ciprofloxacin, and 0.6% were nonsusceptible to cefotaxime. In total, 2.5% of isolates were from invasive infections, with no significant difference in AMR profiles between invasive and noninvasive isolates. Most isolates with clinically relevant AMR profiles were associated with travel, particularly to Southeast Asia, with multiple "incursions" of virulent and resistant clones into Australia. Our findings represent the largest longitudinal surveillance system for NTS in Australia and provide valuable public health knowledge on the trends and distribution of AMR in NTS. Ongoing surveillance is critical to identify local emergence of resistant isolates.The Microbiological Diagnostic Unit Public Health Laboratory is funded by the Department of Health and Human Services, Victoria. The National Health and Medical Research Council, Australia funded a Practitioner Fellowship GNT1105905 to B.P.H. and an Early Career Fellowship GNT1123854 to D.A.W
    corecore