80 research outputs found
Near-surface profiles of aerosol number concentration and temperature over the Arctic Ocean
Temperature and particle number concentration profiles were measured at small height intervals above open and frozen leads and snow surfaces in the central Arctic. The device used was a gradient pole designed to investigate potential particle sources over the central Arctic Ocean. The collected data were fitted according to basic logarithmic flux-profile relationships to calculate the sensible heat flux and particle deposition velocity. Independent measurements by the eddy covariance technique were conducted at the same location. General agreement was observed between the two methods when logarithmic profiles could be fitted to the gradient pole data. In general, snow surfaces behaved as weak particle sinks with a maximum deposition velocity vd = 1.3 mm sâ1 measured with the gradient pole. The lead surface behaved as a weak particle source before freeze-up with an upward flux Fc = 5.7 Ă 104 particles mâ2 sâ1, and as a relatively strong heat source after freeze-up, with an upward maximum sensible heat flux H = 13.1 W mâ2. Over the frozen lead, however, we were unable to resolve any significant aerosol profiles
Near-surface profiles of aerosol number concentration and temperature over the Arctic Ocean
Temperature and particle number concentration profiles were measured at small height intervals above open and frozen leads and snow surfaces in the central Arctic. The device used was a gradient pole designed to investigate potential particle sources over the central Arctic Ocean. The collected data were fitted according to basic logarithmic flux-profile relationships to calculate the sensible heat flux and particle deposition velocity. Independent measurements by the eddy covariance technique were conducted at the same location. General agreement was observed between the two methods when logarithmic profiles could be fitted to the gradient pole data. In general, snow surfaces behaved as weak particle sinks with a maximum deposition velocity <i>v</i><sub>d</sub> = 1.3 mm s<sup>&minus;1</sup> measured with the gradient pole. The lead surface behaved as a weak particle source before freeze-up with an upward flux <i>F</i><sub>c</sub> = 5.7 &times; 10<sup>4</sup> particles m<sup>&minus;2</sup> s<sup>&minus;1</sup>, and as a relatively strong heat source after freeze-up, with an upward maximum sensible heat flux <i>H</i> = 13.1 W m<sup>&minus;2</sup>. Over the frozen lead, however, we were unable to resolve any significant aerosol profiles
A method for detecting the presence of organic fraction in nucleation mode sized particles
New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d<20 nm) and the lower end of Aitken mode particles (d≤50 nm) is still insufficient. In this work, we have applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer) method to shed light on the presence of an organic fraction in the nucleation mode size class in different atmospheric environments. The basic principle of the organic fraction detection is based on our laboratory UFO-TDMA measurements with organic and inorganic compounds. Our laboratory measurements indicate that the usefulness of the UFO-TDMA in the field experiments would arise especially from the fact that atmospherically the most relevant inorganic compounds do not grow in subsaturated ethanol vapor, when particle size is 10 nm in diameter and saturation ratio is about 86% or below it. Furthermore, internally mixed particles composed of ammonium bisulfate and sulfuric acid with sulfuric acid mass fraction ≤33% show no growth at 85% saturation ratio. In contrast, 10 nm particles composed of various oxidized organic compounds of atmospheric relevance are able to grow in those conditions. These discoveries indicate that it is possible to detect the presence of organics in atmospheric nucleation mode sized particles using the UFO-TDMA method. In the future, the UFO-TDMA is expected to be an important aid to describe the composition of atmospheric newly-formed particles
Hygroscopic and chemical characterisation of Po Valley aerosol
Continental summer-time aerosol in the Italian Po Valley was characterised in
terms of hygroscopic properties and the influence of chemical composition
therein. Additionally, the ethanol affinity of particles was analysed. The
campaign-average minima in hygroscopic growth factors (HGFs, at 90%
relative humidity) occurred just before and during sunrise from 03:00 to
06:00 LT (all data are reported in the local time), but, more generally, the
hygroscopicity during the whole night is very low, particularly in the
smaller particle sizes. The average HGFs recorded during the low HGF period
were in a range from 1.18 (for the smallest, 35nm particles) to 1.38 (for the
largest, 165 nm particles). During the day, the HGF gradually increased to
achieve maximum values in the early afternoon hours 12:00â15:00, reaching
1.32 for 35 nm particles and 1.46 for 165 nm particles. Two contrasting
case scenarios were encountered during the measurement period: Case 1 was
associated with westerly air flow moving at a moderate pace and Case 2 was
associated with more stagnant, slower moving air from the north-easterly
sector. Case 1 exhibited weak diurnal temporal patterns, with no distinct
maximum or minimum in HGF or chemical composition, and was associated with
moderate non-refractory aerosol mass concentrations (for 50% size cut at
1 ÎŒ) of the order of 4.5 ÎŒg m<sup>â3</sup>. For Case 1,
organics contributed typically 50% of the mass. Case 2 was characterised
by >9.5 ÎŒg m<sup>â3</sup> total non-refractory mass
(<1 Ό) in the early morning hours (04:00), decreasing to
~3 ÎŒg m<sup>â3</sup> by late morning (10:00) and exhibited strong
diurnal changes in chemical composition, particularly in nitrate mass but
also in total organic mass concentrations. Specifically, the concentrations
of nitrate peaked at night-time, along with the concentrations of
hydrocarbon-like organic aerosol (HOA) and of semi-volatile oxygenated
organic aerosol (SV-OOA). In general, organic growth factors (OGFs) followed
a trend which was opposed to HGF and also to the total organic mass as
measured by the aerosol mass spectrometer. The analysis of the HGF
probability distribution function (PDF) reveals an existence of a predominant
"more hygroscopic" (MH) mode with HGF of 1.5 around noon, and two
additional modes: one with a "less hygroscopic" (LH) HGF of 1.26, and
another with a "barely hygroscopic" (BH) mode of 1.05. Particles sized
165 nm exhibited moderate diurnal variability in HGF, ranging from 80% at
night to 95% of "more hygroscopic" growth factors (i.e. HGFs 1.35â1.9)
around noon. The diurnal changes in HGF progressively became enhanced with
decreasing particle size, decreasing from 95% "more hygroscopic" growth
factor fraction at noon to 10% fraction at midnight, while the "less
hygroscopic" growth factor fraction (1.13â1.34) increased from 5% at
noon to > 60% and the "barely hygroscopic" growth factor
fraction (1.1â1.2) increased from less than 2% at noon to 30% at
midnight. Surprisingly, the lowest HGFs occurred for the period when nitrate
mass reached peak concentrations (Case 2). We hypothesised that the low HGFs
of nitrate-containing particles can be explained by a) an organic coating
suppressing the water-uptake, and/or by b) the existence of nitrates in a
less hygroscopic state, e.g. as organic nitrates. The latter hypothesis
allows us to explain also the reduced OGFs observed during the early morning
hours (before dawn) when nitrate concentrations peaked, based on the evidence
that organic nitrates have significant lower ethanol affinity than other
SV-OOA compounds
Overview and preliminary results of the Surface Ocean Aerosol Production (SOAP) campaign
Establishing the relationship between marine boundary layer (MBL) aerosols and surface water biogeochemistry is required to understand aerosol and cloud production processes over the remote ocean and represent them more accurately in earth system models and global climate projections. This was addressed by the SOAP (Surface Ocean Aerosol Production) campaign, which examined airâsea interaction over biologically productive frontal waters east of New Zealand. This overview details the objectives, regional context, sampling strategy and provisional findings of a pilot study, PreSOAP, in austral summer 2011 and the following SOAP voyage in late austral summer 2012. Both voyages characterized surface water and MBL composition in three phytoplankton blooms of differing species composition and biogeochemistry, with significant regional correlation observed between chlorophyll a and DMSsw. Surface seawater dimethylsulfide (DMSsw) and associated airâsea DMS flux showed spatial variation during the SOAP voyage, with maxima of 25âŻnmolâŻLâ1 and 100âŻÂ”molâŻmâ2âŻdâ1, respectively, recorded in a dinoflagellate bloom. Inclusion of SOAP data in a regional DMSsw compilation indicates that the current climatological mean is an underestimate for this region of the southwest Pacific. Estimation of the DMS gas transfer velocity (kDMS) by independent techniques of eddy covariance and gradient flux showed good agreement, although both exhibited periodic deviations from model estimates. Flux anomalies were related to surface warming and sea surface microlayer enrichment and also reflected the heterogeneous distribution of DMSsw and the associated flux footprint. Other aerosol precursors measured included the halides and various volatile organic carbon compounds, with first measurements of the short-lived gases glyoxal and methylglyoxal in pristine Southern Ocean marine air indicating an unidentified local source. The application of a real-time clean sector, contaminant markers and a common aerosol inlet facilitated multi-sensor measurement of uncontaminated air. Aerosol characterization identified variable Aitken mode and consistent submicron-sized accumulation and coarse modes. Submicron aerosol mass was dominated by secondary particles containing ammonium sulfate/bisulfate under light winds, with an increase in sea salt under higher wind speeds. MBL measurements and chamber experiments identified a significant organic component in primary and secondary aerosols. Comparison of SOAP aerosol number and size distributions reveals an underprediction in GLOMAP (GLObal Model of Aerosol Processes)-mode aerosol number in clean marine air masses, suggesting a missing marine aerosol source in the model. The SOAP data will be further examined for evidence of nucleation events and also to identify relationships between MBL composition and surface ocean biogeochemistry that may provide potential proxies for aerosol precursors and production
Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry
Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (Peer reviewe
Smoking in context â a multilevel approach to smoking among females in Helsinki
<p>Abstract</p> <p>Background</p> <p>Smoking is associated with disadvantage. As people with lower social status reside in less privileged areas, the extent of contextual influences for smoking remains unclear. The aims were to examine the spatial patterning of daily smoking within the city of Helsinki, to analyse whether contextual variation can be observed and which spatial factors associate with current daily smoking in the employed female population.</p> <p>Methods</p> <p>Data from a cross-sectional questionnaire were collected for municipal employees of Helsinki (aged 40â60 years). The response rate was 69%. As almost 4/5 of the employees are females, the analyses were restricted to women (n = 5028). Measures included smoking status, individual level socio-demographic characteristics (age, occupational social class, education, family type) and statistical data describing areas in terms of social structure (unemployment rate, proportion of manual workers) and social cohesion (proportions of single parents and single households). Logistic multilevel analysis was used to analyse data.</p> <p>Results</p> <p>After adjusting for the individual-level composition, smoking was significantly more prevalent according to all social structural and social cohesion indicators apart from the proportion of manual workers. For example, high unemployment in the area of domicile increased the risk of smoking by almost a half. The largest observed area difference in smoking â 8 percentage points â was found according to the proportion of single households.</p> <p>Conclusion</p> <p>The large variation in smoking rates between areas appears mainly to result from variation in the characteristics of residents within areas. Yet, living in an area with a high level of unemployment appears to be an additional risk for smoking that cannot be fully accounted for by individual level characteristics even in a cohort of female municipal employees.</p
Recommended from our members
Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry
Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit
Recommended from our members
Evolution of particle composition in CLOUD nucleation experiments
Sulphuric acid, ammonia, amines, and oxidised organics play a crucial role in nanoparticle formation in the atmosphere. In this study, we investigate the composition of nucleated nanoparticles formed from these compounds in the CLOUD (Cosmics Leaving Outdoor Droplets) chamber experiments at CERN (Centre europĂ©en pour la recherche nuclĂ©aire). The investigation was carried out via analysis of the particle hygroscopicity, ethanol affinity, oxidation state, and ion composition. Hygroscopicity was studied by a hygroscopic tandem differential mobility analyser and a cloud condensation nuclei counter, ethanol affinity by an organic differential mobility analyser and particle oxidation level by a high-resolution time-of-flight aerosol mass spectrometer. The ion composition was studied by an atmospheric pressure interface time-of-flight mass spectrometer. The volume fraction of the organics in the particles during their growth from sizes of a few nanometers to tens of nanometers was derived from measured hygroscopicity assuming the ZdanovskiiâStokesâRobinson relationship, and compared to values gained from the spectrometers. The ZSR-relationship was also applied to obtain the measured ethanol affinities during the particle growth, which were used to derive the volume fractions of sulphuric acid and the other inorganics (e.g. ammonium salts). In the presence of sulphuric acid and ammonia, particles with a mobility diameter of 150 nm were chemically neutralised to ammonium sulphate. In the presence of oxidation products of pinanediol, the organic volume fraction of freshly nucleated particles increased from 0.4 to ~0.9, with an increase in diameter from 2 to 63 nm. Conversely, the sulphuric acid volume fraction decreased from 0.6 to 0.1 when the particle diameter increased from 2 to 50 nm. The results provide information on the composition of nucleated aerosol particles during their growth in the presence of various combinations of sulphuric acid, ammonia, dimethylamine and organic oxidation products
- âŠ