103 research outputs found

    A novel hybrid swarm optimized multilayer neural network for spatial prediction of flash floods in tropical areas using sentinel-1 SAR imagery and geospatial data

    Full text link
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Flash floods are widely recognized as one of the most devastating natural hazards in the world, therefore prediction of flash flood-prone areas is crucial for public safety and emergency management. This research proposes a new methodology for spatial prediction of flash floods based on Sentinel-1 SAR imagery and a new hybrid machine learning technique. The SAR imagery is used to detect flash flood inundation areas, whereas the new machine learning technique, which is a hybrid of the firefly algorithm (FA), Levenberg–Marquardt (LM) backpropagation, and an artificial neural network (named as FA-LM-ANN), was used to construct the prediction model. The Bac Ha Bao Yen (BHBY) area in the northwestern region of Vietnam was used as a case study. Accordingly, a Geographical Information System (GIS) database was constructed using 12 input variables (elevation, slope, aspect, curvature, topographic wetness index, stream power index, toposhade, stream density, rainfall, normalized difference vegetation index, soil type, and lithology) and subsequently the output of flood inundation areas was mapped. Using the database and FA-LM-ANN, the flash flood model was trained and verified. The model performance was validated via various performance metrics including the classification accuracy rate, the area under the curve, precision, and recall. Then, the flash flood model that produced the highest performance was compared with benchmarks, indicating that the combination of FA and LM backpropagation is proven to be very effective and the proposed FA-LM-ANN is a new and useful tool for predicting flash flood susceptibility

    On relativization of the Sommerfeld-Gamow-Sakharov factor

    Full text link
    The Sommerfeld-Gamow-Sakharov factor is considered for the general case of arbitrary masses and energies. It is shown that the scalar triangular one-loop diagram gives the Coulomb singularity in radiative corrections at the threshold. The singular part of the correction is factorized at the complete Born cross section regardless of its partial wave decomposition. Different approaches to generalize the factor are discussed.Comment: 9 pages, 4 figures; references and discussion are extende

    Hexa Histidine–Tagged Recombinant Human Cytoglobin Deactivates Hepatic Stellate Cells and Inhibits Liver Fibrosis by Scavenging Reactive Oxygen Species

    Get PDF
    BACKGROUND & AIMS: Anti-fibrotic therapy remains an unmet medical need in human chronic liver disease. We report the anti-fibrotic properties of cytoglobin (CYGB), a respiratory protein expressed in hepatic stellate cells (HSCs), the main cell type involved in liver fibrosis. APPROACH & RESULTS: Cygb-deficient mice which had bile duct ligation (BDL)-induced liver cholestasis or choline-deficient L-amino acid-defined (CDAA) diet-induced steatohepatitis significantly exacerbated liver damage, fibrosis and reactive oxygen species (ROS) formation. All these manifestations were attenuated in Cygb-overexpressing mice. We produced 6His-tagged recombinant human CYGB (His-CYGB), traced its bio-distribution and assessed its function in HSCs or in mice with advanced liver cirrhosis using thioacetamide (TAA) or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). In cultured HSCs, extracellular His-CYGB was endocytosed and accumulated in endosomes via clathrin-mediated pathway. His-CYGB significantly impeded ROS formation spontaneously or in the presence of ROS inducers in HSCs, thus leading to the attenuation of collagen type I alpha 1 production and alpha-smooth muscle actin expression. Replacement the iron centre of the heme group with cobalt nullified the effect of His-CYGB. In addition, His-CYGB induced interferon-β secretion by HSCs which partly contributed to its anti-fibrotic function. Momelotinib incompletely reversed the effect of His-CYGB. Intravenously injected His-CYGB markedly suppressed liver inflammation, fibrosis and oxidative cell damage in TAA- or DDC-administered mice without adverse effects. RNA-seq analysis revealed the downregulation of inflammation and fibrosis-related genes and the upregulation of antioxidant genes in both cell culture and liver tissues. The injected His-CYGB predominantly localised to HSCs but not to macrophages, suggesting specific targeting effects. His-CYGB exhibited no toxicity in humanised liver chimeric PXB mice. CONCLUSIONS: His-CYGB could have anti-fibrotic clinical applications for human chronic liver diseases

    Parton Fragmentation within an Identified Jet at NNLL

    Full text link
    The fragmentation of a light parton i to a jet containing a light energetic hadron h, where the momentum fraction of this hadron as well as the invariant mass of the jet is measured, is described by "fragmenting jet functions". We calculate the one-loop matching coefficients J_{ij} that relate the fragmenting jet functions G_i^h to the standard, unpolarized fragmentation functions D_j^h for quark and gluon jets. We perform this calculation using various IR regulators and show explicitly how the IR divergences cancel in the matching. We derive the relationship between the coefficients J_{ij} and the quark and gluon jet functions. This provides a cross-check of our results. As an application we study the process e+ e- to X pi+ on the Upsilon(4S) resonance where we measure the momentum fraction of the pi+ and restrict to the dijet limit by imposing a cut on thrust T. In our analysis we sum the logarithms of tau=1-T in the cross section to next-to-next-to-leading-logarithmic accuracy (NNLL). We find that including contributions up to NNLL (or NLO) can have a large impact on extracting fragmentation functions from e+ e- to dijet + h.Comment: expanded introduction, typos fixed, journal versio

    Cancer cells produce liver metastasis via gap formation in sinusoidal endothelial cells through proinflammatory paracrine mechanisms

    Full text link
    Intracellular gap (iGap) formation in liver sinusoidal endothelial cells (LSECs) is caused by the destruction of fenestrae and appears under pathological conditions; nevertheless, their role in metastasis of cancer cells to the liver remained unexplored. We elucidated that hepatotoxin-damaged and fibrotic livers gave rise to LSECs-iGap formation, which was positively correlated with increased numbers of metastatic liver foci after intrasplenic injection of Hepa1-6 cells. Hepa1-6 cells induced interleukin-23-dependent tumor necrosis factor-α (TNF-α) secretion by LSECs and triggered LSECs-iGap formation, toward which their processes protruded to transmigrate into the liver parenchyma. TNF-α triggered depolymerization of F-actin and induced matrix metalloproteinase 9 (MMP9), intracellular adhesion molecule 1, and CXCL expression in LSECs. Blocking MMP9 activity by doxycycline or an MMP2/9 inhibitor eliminated LSECs-iGap formation and attenuated liver metastasis of Hepa1-6 cells. Overall, this study revealed that cancer cells induced LSEC-iGap formation via proinflammatory paracrine mechanisms and proposed MMP9 as a favorable target for blocking cancer cell metastasis to the liver

    A Condensation-Ordering Mechanism in Nanoparticle-Catalyzed Peptide Aggregation

    Get PDF
    Nanoparticles introduced in living cells are capable of strongly promoting the aggregation of peptides and proteins. We use here molecular dynamics simulations to characterise in detail the process by which nanoparticle surfaces catalyse the self- assembly of peptides into fibrillar structures. The simulation of a system of hundreds of peptides over the millisecond timescale enables us to show that the mechanism of aggregation involves a first phase in which small structurally disordered oligomers assemble onto the nanoparticle and a second phase in which they evolve into highly ordered beta-sheets as their size increases

    Everyday concept detection in visual lifelogs: validation, relationships and trends

    Get PDF
    The Microsoft SenseCam is a small lightweight wearable camera used to passively capture photos and other sensor readings from a user's day-to-day activities. It can capture up to 3,000 images per day, equating to almost 1 million images per year. It is used to aid memory by creating a personal multimedia lifelog, or visual recording of the wearer's life. However the sheer volume of image data captured within a visual lifelog creates a number of challenges, particularly for locating relevant content. Within this work, we explore the applicability of semantic concept detection, a method often used within video retrieval, on the novel domain of visual lifelogs. A concept detector models the correspondence between low-level visual features and high-level semantic concepts (such as indoors, outdoors, people, buildings, etc.) using supervised machine learning. By doing so it determines the probability of a concept's presence. We apply detection of 27 everyday semantic concepts on a lifelog collection composed of 257,518 SenseCam images from 5 users. The results were then evaluated on a subset of 95,907 images, to determine the precision for detection of each semantic concept. We conduct further analysis on the temporal consistency, co-occurance and trends within the detected concepts to more extensively investigate the robustness of the detectors within this novel domain. We additionally present future applications of concept detection within the domain of lifelogging

    Measurement of the top quark mass using the matrix element technique in dilepton final states

    Get PDF
    We present a measurement of the top quark mass in pp¯ collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7  fb−1. The matrix element technique is applied to tt¯ events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton+jets final state of tt¯ decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt=173.93±1.84  GeV

    Genome-Wide Profile of Pleural Mesothelioma versus Parietal and Visceral Pleura: The Emerging Gene Portrait of the Mesothelioma Phenotype

    Get PDF
    Malignant pleural mesothelioma is considered an almost incurable tumour with increasing incidence worldwide. It usually develops in the parietal pleura, from mesothelial lining or submesothelial cells, subsequently invading the visceral pleura. Chromosomal and genomic aberrations of mesothelioma are diverse and heterogenous. Genome-wide profiling of mesothelioma versus parietal and visceral normal pleural tissue could thus reveal novel genes and pathways explaining its aggressive phenotype.Well-characterised tissue from five mesothelioma patients and normal parietal and visceral pleural samples from six non-cancer patients were profiled by Affymetrix oligoarray of 38 500 genes. The lists of differentially expressed genes tested for overrepresentation in KEGG PATHWAYS (Kyoto Encyclopedia of Genes and Genomes) and GO (gene ontology) terms revealed large differences of expression between visceral and parietal pleura, and both tissues differed from mesothelioma. Cell growth and intrinsic resistance in tumour versus parietal pleura was reflected in highly overexpressed cell cycle, mitosis, replication, DNA repair and anti-apoptosis genes. Several genes of the “salvage pathway” that recycle nucleobases were overexpressed, among them TYMS, encoding thymidylate synthase, the main target of the antifolate drug pemetrexed that is active in mesothelioma. Circadian rhythm genes were expressed in favour of tumour growth. The local invasive, non-metastatic phenotype of mesothelioma, could partly be due to overexpression of the known metastasis suppressors NME1 and NME2. Down-regulation of several tumour suppressor genes could contribute to mesothelioma progression. Genes involved in cell communication were down-regulated, indicating that mesothelioma may shield itself from the immune system. Similarly, in non-cancer parietal versus visceral pleura signal transduction, soluble transporter and adhesion genes were down-regulated. This could represent a genetical platform of the parietal pleura propensity to develop mesothelioma.Genome-wide microarray approach using complex human tissue samples revealed novel expression patterns, reflecting some important features of mesothelioma biology that should be further explored

    Structures and orientation-dependent interaction forces of titania nanowires using molecular dynamics simulations

    Get PDF
    Engineering nano wires to develop new products and processes is highly topical due to their ability to provide highly enhanced physical, chemical, mechanical, thermal and electrical properties. In this work, using molecular dynamics simulations, we report fundamental information, about the structural and thermodynamic properties of individual anatase titania (TiO2) nanowires with cross-sectional diameters between 2 and 6 nm, and aspect ratio (Length: Diameter) of 6:1 at temperatures ranging from 300 to 3000 K. Estimates of the melting-transition temperature of the nanowires are between 2000 and 2500 K. The melting transition temperature predicted from the radial distribution functions (RDFs) shows strong agreement with those predicted from the total energy profiles. Overall, the transition temperature is in reasonable agreement with melting points predicted from experiments and simulations reported in the literature for spherical nanoparticles of similar sizes. Hence, the melting-transition temperature of TiO2 nanowires modelled here can be considered as shape independent. Furthermore, for the first time based on MD simulations, interaction forces between two nanowires are reported at ambient temperature (300 K) for different orientations: parallel, perpendicular, and end-to-end. It is observed that end-to-end orientations manifested the strongest attraction forces, while the parallel and perpendicular orientations, displayed weaker attractions. The results reported here could form a foundation in future multiscale modelling studies of the structured titania nanowire assemblies, depending on the inter-wire interaction forces
    corecore