42 research outputs found

    Non-Lipschitz points and the SBV regularity of the minimum time function

    Full text link
    This paper is devoted to the study of the Hausdorff dimension of the singular set of the minimum time function TT under controllability conditions which do not imply the Lipschitz continuity of TT. We consider first the case of normal linear control systems with constant coefficients in RN\mathbb{R}^N. We characterize points around which TT is not Lipschitz as those which can be reached from the origin by an optimal trajectory (of the reversed dynamics) with vanishing minimized Hamiltonian. Linearity permits an explicit representation of such set, that we call S\mathcal{S}. Furthermore, we show that S\mathcal{S} is HN−1\mathcal{H}^{N-1}-rectifiable with positive HN−1\mathcal{H}^{N-1}-measure. Second, we consider a class of control-affine \textit{planar} nonlinear systems satisfying a second order controllability condition: we characterize the set S\mathcal{S} in a neighborhood of the origin in a similar way and prove the H1\mathcal{H}^1-rectifiability of S\mathcal{S} and that H1(S)>0\mathcal{H}^1(\mathcal{S})>0. In both cases, TT is known to have epigraph with positive reach, hence to be a locally BVBV function (see \cite{CMW,GK}). Since the Cantor part of DTDT must be concentrated in S\mathcal{S}, our analysis yields that TT is SBVSBV, i.e., the Cantor part of DTDT vanishes. Our results imply also that TT is locally of class C1,1\mathcal{C}^{1,1} outside a HN−1\mathcal{H}^{N-1}-rectifiable set. With small changes, our results are valid also in the case of multiple control input.Comment: 23 page

    Improved N-Type 4h-Sic Epitaxial Layer Radiation Detectors and Noise Analysis of Front-End Readout Electronics

    Get PDF
    Schottky barrier radiation detectors were fabricated on n-type 4H-SiC epitaxial layers (12 – 50 ÎŒm) grown by hot wall CVD process on highly nitrogen doped 4H-SiC (0001) substrates with 4-8Âș off-cut towards the ̅ direction. Ni/4H-SiC Schottky barrier radiation detectors, a very low leakage current of 0.18 nA at 250 V bias, revealing low thermal noise, was observed in current-voltage (I-V) measurements. Using a thermionic emission model, junction properties such as barrier height of ≄1.10 eV and an ideality factor of ≀1.29 were determined. An effective carrier concentration of 1.03×1015 cm-3 was calculated by capacitance-voltage (C-V) measurement. Deep level transient spectroscopy (DLTS) was used to investigate electrically active defects in epilayer. Defect parameters such as activation energy, capture cross-section, and density of defects were calculated from Arrhenius plots. DLTS revealed the presence of shallow level defects related to titanium impurities, electrically active lifetime killer Z1/2 defect, and deep level defects assigned as EH6/7 which are related to carbon and carbon-silicon vacancies. The density of Z1/2 defect, the most detrimental to detector performance, was 1.6×1012 cm-3, orders of magnitude lower compared to other 4H-SiC detectors. Detector performances were evaluated in terms of the energy resolution at full-width at half-maximum (FWHM) using pulse height spectroscopy (PHS) measurements with 0.1 ÎŒCi 241Am source. Charge collection efficiency was investigated using a drift-diffusion charge transport model. The energy resolution for 5.486 MeV alpha particles was 166 keV with charge collection efficiency of 22.6%. Electronic noise analysis of front-end readout system was carried out in terms of equivalent noise charge (ENC) in order to study the contribution of white series noise, pink noise ( parallel and ⁄ series) and white parallel noise to the total electronic noise in the detection system. New edge termination was developed using surface passivating layers of silicon dioxide (SiO2) and silicon nitride (Si3N4) in order to improve detector performance. With edge termination, reverse leakage current of Ni/4H-SiC epilayer detector was improved significantly (nA to pA) leading to an increased signal-to-noise ratio. Improved Schottky properties such as barrier height of ~1.7 eV and diode ideality factor of ~1.07 were observed indicating a better surface uniformity that enhanced charge collection efficiency. C-V measurement confirmed a doping concentration of 2.4 x 1014 cm-3 ensuring a fully depleted (~20 ÎŒm) detector at bias voltages as low as ~70 V. DLTS analysis showed a decreased concentration of performance limiting Z1/2 defect level and absence of EH6/7 deep-levels with edge termination, ensuing a more complete charge collection. Alpha spectroscopy measurements revealed an improved detector energy resolution from ~0.7% to ~0.4% for 5.48 MeV alpha particles with edge termination. 4H-SiC epitaxial detector with ruthenium (Ru) Schottky barrier contact (in addition to Ni being used in above studies) was investigated for operation in harsh environments with high temperature and high radiation. Ru/4H-SiC Schottky detectors exhibited excellent rectification and improved junction properties, even without edge termination. However, inhomogeneity of the Schottky barrier heights was observed due to interfacial defects resulting from a solid-state reaction involving Ru, Si, and C. As a result, pulse-height spectra with 241Am source were broad, and the three characteristic alpha peaks were not resolved. The energy resolution was calculated to be ~ 0.75% at 180 V reverse bias at room temperature

    Effect of thickness of polyethylene packaging and temperature on quality of solar-dried oyster mushroom (Pleurotus sajor-caju)

    Get PDF
    Pleurotus sajor-caju is evaluated as an edible fungi with high nutritional and medicinal value, but fresh mushrooms are easily damaged after harvest due to many reasons. Drying methods can be taken to maintain mushroom quality, reduce losses and prolong postharvest storage time. The objective of this study was to evaluate the effects of polyethylene (PE) packaging thickness (91.70 ”m; 81.30 ”m and 53.50 ”m), temperature (28 oC-30 oC and 3 oC-5 oC) (with air humidity of 60-62% and 76-78% respectively), to the quality of oyster mushrooms dried by solar energy, during storage. During the storage period, the total sugar and protein contents of all treatments decreased. Besides, the colour (through the difference in lightness and darkness (?L) value) and firmness of the solar-dried oyster mushrooms also decreased, so, oyster mushrooms were darkened and softened. After 6 months, the lowest protein, total sugar and lipid loss was found in PE packaging of 91.70 ”m thickness at storage temperature of 3 oC-5 oC. In addition, the water activity of dried mushrooms was lower (less than 0.7), so it ensures microbiological safety

    Destination-aware Adaptive Traffic Flow Rule Aggregation in Software-Defined Networks

    Full text link
    In this paper, we propose a destination-aware adaptive traffic flow rule aggregation (DATA) mechanism for facilitating traffic flow monitoring in SDN-based networks. This method adapts the number of flow table entries in SDN switches according to the level of detail of traffic flow information that other mechanisms (e.g. for traffic engineering, traffic monitoring, intrusion detection) require. It also prevents performance degradation of the SDN switches by keeping the number of flow table entries well below a critical level. This level is not preset as a hard threshold but learned during operation by using a machine-learning based algorithm. The DATA method is implemented within a RESTful application (DATA App) which monitors and analyzes the ongoing network traffic and provides instructions to the SDN controller to adapt the traffic flow matching strategies accordingly. A thorough performance evaluation of DATA is conducted in an SDN emulation environment. The results show that---compared to the default behavior of common SDN controllers---the proposed DATA approach yields significant SDN switch performance improvements while still providing detailed traffic flow information on demand.Comment: This paper was presented at NetSys conference 2019. arXiv admin note: text overlap with arXiv:1909.0154

    Pulse Shape Discrimination of CsI(Tl) with a Photomultiplier Tube and MPPCs

    Full text link
    In this study, we evaluate and compare the pulse shape discrimination (PSD) performance of multipixel photon counters (MPPCs, also known as silicon photomultiphers - SiPMs) with that of a typical photomultiplier tube (PMT) when testing using CsI(Tl) scintillators. We use the charge comparison method, whereby we discriminate different types of particles by the ratio of charges integrated within two time-gates (the delayed part and the entire digitized waveform). For a satisfactory PSD performance, a setup should generate many photoelectrons (p.e.) and collect their charges efficiently. The PMT setup generates more p.e. than the MPPC setup does. With the same digitizer and the same long time-gate (the entire digitized waveform), the PMT setup is also better in charge collection. Therefore, the PMT setup demonstrates better PSD performance. We subsequently test the MPPC setup using a new data acquisition (DAQ) system. Using this new DAQ, the long time-gate is extended by nearly four times the length when using the previous digitizer. With this longer time-gate, we collect more p.e. at the tail part of the pulse and almost all the charges of the total collected p.e. Thus, the PSD performance of the MPPC setup is improved significantly. This study also provides an estimation of the short time-gate (the delayed part of the digitized waveform) that can give a satisfactory PSD performance without an extensive analysis to optimize this gate

    Study of the Isomeric Ratio of 135m,g 54Xe in Photofission 23793Np in Giant Dipole Resonance Region

    Get PDF
    In this work we present the results of measurement of the isomeric ratio of fission fragment e in photofission of 237Np induced by bremsstrahlung in the Giant Dipole Resonance Region by the method using the inert gaseous flow. The experiments have been performed at the electron accelerator Microtron MT-25 of the Flerov laboratory of Nuclear Reaction, Joint Institute for Nuclear Research, Dubna, Russia. The results were discussed and compared with that of other authors

    Prototyping of DSSDs for Particle Tracking and Spectroscopy within the EXL Project at Fair

    Get PDF
    Prototype double-sided silicon strip detectors (DSSDss) of 300 ÎŒ\mu m thickness produced at PTI St. Petersburg (Russia) were tested for the use as position sensitive, ΔE\Delta E and E detectors for tracking and particle identification in the EXL (EXotic nuclei studied in Light-ion induced reactions at the NESR storage ring) setup at the FAIR (Facility for Antiproton and Ion Research) project at GSI. We describe the characteristics of detectors with 16×16,  64×6416 \times 16,\;64\times 64 and 64×1664\times 16 strips, respectively. The response of these detectors for 241^{241}Am α\alpha particles injected either from the p or n side was examined. The test measurements were performed partially at GSI and the University of Edinburgh. A first in-beam test with a proton beam of 50 MeV with the latter two DSSDs and two 6.5 mm thick Si(Li) detectors was also done at KVI Groningen, the Netherlands. The results reveal good spectroscopic properties of these detectors

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Regular and singular points for linear minimum time problems

    No full text
    Parallel sessionInternational audienceRegular and singular points for linear minimum time problem
    corecore