22 research outputs found

    Cross-species amplification of 36 cyprinid microsatellite loci in Phoxinus phoxinus (L.) and Scardinius erythrophthalmus (L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To conduct phylogeographic or population genetic studies, an adequate number of DNA markers for the focal species are required. Due to severe unavailability of genotype markers of any kind for the species Eurasian minnow (<it>Phoxinus phoxinus </it>L.) and rudd (<it>Scardinius erythrophthalmus </it>L.), we set out to attempt cross-amplification of a set of microsatellite loci from related species.</p> <p>Findings</p> <p>We tested 36 cyprinid microsatellite loci for cross-species amplification in minnow and rudd. Fifteen species-locus combinations produced amplifications in minnow, seven being polymorphic, while 18 combinations amplified in rudd, nine of these being polymorphic.</p> <p>Conclusions</p> <p>The positive cross-species amplifications present potential contributions to the establishment of genetic marker sets for population genetics studies of the two focal species.</p

    Ontogenetic constraints on foraminiferal test construction

    Get PDF
    INTRODUCTION:It is important to understand the drivers leading to adaptive phenotypic diversity within and among species. The threespine stickleback (Gasterosteus aculeatus) has become a model system for investigating the genetic and phenotypic responses during repeated colonization of fresh waters from the original marine habitat. During the freshwater colonization process there has been a recurrent and parallel reduction in the number of lateral bone plates, making it a suitable system for studying adaptability and parallel evolution. OBJECTIVE:The aim of this study was to investigate an alternative evolutionary path of lateral plate reduction, where lateral plates are reduced in size rather than number. MATERIALS AND METHODS:A total of 72 threespine stickleback individuals from freshwater (n = 54), brackish water (n = 27) and marine water (n = 9) were analysed using microcomputed tomography (μCT) to determine variation in size, thickness and structure of the lateral plates. Furthermore, whole-body bone volume, and bone volume, bone surface and porosity of lateral plate number 4 were quantified in all specimens from each environment. RESULTS:The results showed a significant difference in plate size (area and volume) among populations, where threespine stickleback from polymorphic freshwater and brackish water populations displayed lateral plates reduced in size (area and volume) compared to marine stickleback. CONCLUSIONS:Reduction of lateral plates in threespine stickleback in fresh and brackish water occurs by both plate loss and reduction in plate size (area and volume)

    Life history, population viability, and the potential for local adaptation in isolated trout populations

    No full text
    Habitat loss and fragmentation have caused population decline across taxa through impacts on life history diversity, dispersal patterns, and gene flow. Yet, intentional isolation of native fish populations is a frequently used management strategy to protect against negative interactions with invasive fish species. We evaluated the population viability and genetic diversity of 12 isolated populations of Oncorhynchus clarkii lewisi located on the Flathead Indian Reservation in Montana, USA. Length-structured integral projection models (IPMs) were used to project population growth rate (lambda) and its sensitivity to underlying vital rates and parameters. We examined relationships between lambda, genetic diversity, and habitat size and quality. Lambda ranged from 0.68 to 1.1 with 10 of 12 populations projected to be in decline. A sensitivity analysis of lambda with respect to projection matrix elements indicated that lambda was generally sensitive to changes in early life history stages (survival/growth), but patterns differed among populations. Another sensitivity analysis with respect to underlying model parameters showed highly consistent pattern across populations, with lambda being most sensitive to the slope of probability of maturity (estimated from published literature), generally followed by adult survival, and the slope of somatic growth rate (directly measured from each population). Lambda was not correlated with genetic diversity. For populations residing in small isolated streams (≤5 km of occupied habitat), lambda significantly increased with base flow discharge (r2=0.50, p<0.02). Our results highlight the potential importance of local adaptation for persistence of small, isolated populations. Specifically we saw evidence for higher probability of maturity at smaller sizes in the smallest, coldest isolated systems, increasing probability of persistence for these populations. Climate change threatens to further fragment populations of aquatic organisms and reduce summertime base flows in much of western North America. Insights from studies such as ours will inform management strategies for long-term persistence of species facing these challenges

    Haddeland et al._genotypes_and_metadata

    No full text
    the excel file contains 2 sheets: sheet1 contains a description of the data in sheet2, sheet2 contains the microsatellite genotypes, length and sex information for 994 individuals of Thymallus thymallu

    The temporal window of ecological adaptation in postglacial lakes: a comparison of head morphology, trophic position and habitat use in Norwegian threespine stickleback populations

    Get PDF
    Background: Studying how trophic traits and niche use are related in natural populations is important in order to understand adaptation and specialization. Here, we describe trophic trait diversity in twenty-five Norwegian freshwater threespine stickleback populations and their putative marine ancestor, and relate trait differences to postglacial lake age. By studying lakes of different ages, depths and distance to the sea we examine key environmental variables that may predict adaptation in trophic position and habitat use. We measured trophic traits including geometric landmarks that integrated variation in head shape as well as gillraker length and number. Trophic position (Tpos) and niche use (α) were estimated from stable isotopes (δ13C, δ15N). A comparison of head shape was also made with two North American benthic-limnetic species pairs. Results We found that head shape differed between marine and freshwater sticklebacks, with marine sticklebacks having more upturned mouths, smaller eyes, larger opercula and deeper heads. Size-adjusted gillraker lengths were larger in marine than in freshwater stickleback. Norwegian sticklebacks were compared on the same head shape axis as the one differentiating the benthic-limnetic North American threespine stickleback species pairs. Here, Norwegian freshwater sticklebacks with a more “limnetic head shape” had more and longer gillrakers than sticklebacks with “benthic head shape”. The “limnetic morph” was positively associated with deeper lakes. Populations differed in α (mean ± sd: 0.76 ± 0.29) and Tpos (3.47 ± 0.27), where α increased with gillraker length. Larger fish had a higher Tpos than smaller fish. Compared to the ecologically divergent stickleback species pairs and solitary lake populations in North America, Norwegian freshwater sticklebacks had similar range in Tpos and α values, but much less trait divergences. Conclusions Our results showed trait divergences between threespine stickleback in marine and freshwater environments. Freshwater populations diverged in trophic ecology and trophic traits, but trophic ecology was not related to the elapsed time in freshwater. Norwegian sticklebacks used the same niches as the ecologically divergent North American stickleback species pairs. However, as trophic trait divergences were smaller, and not strongly associated with the ecological niche, ecological adaptations along the benthic-limnetic axis were less developed in Norwegian sticklebacks.Science, Faculty ofNon UBCZoology, Department ofReviewedFacult

    Quality and size of lateral plates in threespine stickleback from marine (M), brackish water (BW) and freshwater (FW).

    No full text
    <p>Quality and size of lateral plates in threespine stickleback from marine (M), brackish water (BW) and freshwater (FW).</p

    Distribution and variation of lateral plates in threespine stickleback.

    No full text
    <p>The complete plate morph (A) with up to 35 lateral plates on each side, covering the anterior region until the caudal peduncle, the partial plate morph (B) lack one or more plates in the midsection or in the keel, and the low plate morph (C) with only plates in the anterior region.</p
    corecore