2,768 research outputs found

    A Summary of the ADVANCE Trial

    Get PDF
    The publication of the U.K. Prospective Diabetes Study (UKPDS) in 1998 helped to shape the management of type 2 diabetes in recent years (1). The study demonstrated several points. First, sulfonylureas are as safe as insulin in controlling blood glucose. Second, metformin reduced cardiovascular disease in an overweight subgroup. Third, the same benefit of glycemic control in reducing microvascular disease (previously noted in type 1 diabetes) is applied equally to patients with type 2 diabetes. A separation in A1C of ∼1% in the UKPDS reduced the risk of microvascular disease (largely diabetic retinopathy) by ∼25%. This reflected the data from the Diabetes Control and Complications Trial, where a separation in A1C of 2% in intensive and standard groups led to a reduction in microvascular disease of ∼50% (2). A fourth demonstration was that there was no significant reduction in macrovascular disease but a trend toward fewer myocardial infarctions with more intensive glucose control. Fifth, using the current treatment of the time (first-generation sulfonylureas, human ultratard insulin, or metformin), it proved impossible to maintain glucose control, which tended to deteriorate throughout the study. It is now generally believed that the progressive fall in endogenous insulin production as β-cell numbers decline makes it difficult, if not impossible, to maintain tight control using standard treatment. Sixth, the UKPDS also showed that in those patients with hypertension, lowering blood pressure (BP) to moderate levels with either captopril or atenolol could reduce microvascular disease (3). In a subsequent study, the UKPDS investigators presented the rates of both micro- and macrovascular disease according to the achieved levels of A1C during the study (4). They showed a linear relationship between A1C and both groups of complications. The implication of the article was that if glycemic control could be tightened below the levels achieved in the UKPDS, then it might be possible to reduce rates, not only of microvascular complications, but also cardiovascular disease as well. The aim of the glucose arm of the Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled Evaluation (ADVANCE) trial (5) was to build on the information gained by the UKPDS and to answer the question as to whether intensifying glucose control to achieve an A1C of <6.5% would provide additional benefit in reducing the risk of both micro- and macrovascular disease. ADVANCE also asked questions about BP lowering in patients with type 2 diabetes. The aims of the BP arm were to establish whether routine provision of BP-lowering therapy produced additional benefits in terms of macro- and microvascular disease, irrespective of baseline BP, and added to the benefits produced by other cardiovascular preventive therapies, including ACE inhibitors

    Epidemiology of Micro- and Macrovascular Complications of Type 2 Diabetes in Korea

    Get PDF
    The prevalence of diabetes in Korea has increased six- to sevenfold over the past 40 years with its complications becoming major causes of morbidity and mortality. The rate of death among patients with diabetes is about twice as high as that among persons without diabetes and the most common cause of death is cardiovascular disease (30.6%). Despite the seriousness of diabetic complications, 30 to 70% of patients receive inadequate care, and only 40% of treated diabetic patients achieve the optimal control with HbA1c level <7% in Korea. In 2006, over 30 to 40% of patients with diabetes have microvascular complications and around 10% of them have macrovascular complications from our national data. Despite there are some debates about intensive glycemic control resulting in the deterioration of macrovascular complication, multifactorial treatment approaches including proper glycemic control are important to prevent diabetic complications. There have been needs for finding proper biomarkers for predicting diabetic complications properly but we still need more longitudinal studies to find this correlation with causal relationship. In this article, we wanted to review the recent status of micro- and macrovascular complications of type 2 diabetes in Korea from integration of many epidemiologic studies

    Demographics, insulin use and clinical targets in type 2 diabetes insulin users: comparison of a local integrated diabetes service vs a UK-wide cohort

    Get PDF
    Insulin-treated patients with type 2 diabetes require specialist multidisciplinary input to achieve treatment targets. We compared the demographics, achievement of combined NICE targets for HbA1c (≤7.5%), blood pressure (<140/80mmHg) and total cholesterol (<4mmol/L), and insulin use between patients from a local integrated diabetes service with those from a representative UK population. A cross-sectional evaluation of individual patient data from six randomly-selected primary care practices in Erewash (Integrated) Diabetes Service was compared with The Health Improvement Network (THIN) UK primary care database. Baseline age (61.5 years vs 65.8 years; p < 0.0001) and duration of insulin use (4.3 vs 6.3 years; p < 0.0001) use were lower in the THIN cohort. Mean HbA1c was similar between the two cohorts but weight, blood pressure, total and LDL cholesterol were significantly lower in the Erewash population compared with THIN. The combined achievement of HbA1c, total cholesterol and blood pressure was 17.5% in the Erewash cohort compared with 9.6% in the THIN cohort (p < 0.0001). There was a higher proportion of insulin users on basal-bolus than on premix in the Erewash cohort (89.3% vs 10.7%) compared with THIN (59.0% vs 41.1%). The proportion of patients who received concurrent oral glucose-lowering therapies in the Erewash integrated service was lower, except for SGLT2 inhibitors (2.5% in the Erewash cohort vs 0.5% in THIN; p < 0.0001). This model of an integrated diabetes service appears to confer better achievement for the NICE defined clinical targets compared with the THIN cohort. Further studies are required to investigate the impact of this service model on health economics, patient pathway and patient experience. Copyright © 2017 John Wiley & Sons

    Triple Combination Therapy Using Metformin, Thiazolidinedione, and a GLP-1 Analog or DPP-IV Inhibitor in Patients with Type 2 Diabetes Mellitus

    Get PDF
    Although there is no HbA1c threshold for cardiovascular risk, the American Diabetic Association-recommended goal of HbA1c < 7.0% appears to be unacceptably high. To achieve an optimal HbA1c level goal of 6.0% or less, a high dosage of sulfonylureas and insulin would be required; the trade-off would be the common adverse effects of hypoglycemia and weight gain. In contrast, hypoglycemia is uncommon with insulin sensitizers and GLP-1 analogs, allowing the physician to titrate these drugs to maximum dosage to reduce HbA1c levels below 6.0% and they have been shown to preserve β-cell function. Lastly, weight gain is common with sulfonylurea and insulin therapy, whereas GLP-1 analogs induce weight loss and offset the weight gain associated with TZDs. A treatment paradigm shift is recommended in which combination therapy is initiated with diet/exercise, metformin (which has antiatherogenic effects and improves hepatic insulin sensitivity), a TZD (which improves insulin sensitivity and preserves β-cell function with proven durability), and a GLP-1 analog (which improves β, α-cell function and promotes weight loss) or a dipeptidyl peptidase IV inhibitor in patients with type 2 diabetes mellitus

    Glycemic Effects of Once-a-Day Rapid-Acting Insulin Analogue Addition on a Basal Insulin Analogue in Korean Subjects with Poorly Controlled Type 2 Diabetes Mellitus

    Get PDF
    BackgroundThe present study investigates the efficacy in glycemic control by adding once-a-day glulisine to glargine as a basal plus regimen and factors influencing glycemic control with the basal plus regimen in Korean subjects with type 2 diabetes.MethodsIn the present retrospective study, subjects previously treated with the basal plus regimens for at least 6 months were reviewed. Changes in glycemic profiles and clinical parameters were evaluated.ResultsA total of 87 subjects were ultimately enrolled in this study. At baseline, mean glycated hemoglobin (A1c) and glycated albumin were 8.5% (8.0% to 9.6%) and 25.2±7.6%, respectively. After treatment with the basal plus regimen, patients had significant reductions of A1c at 6 months (0.8±0.1%, P<0.001) and their postprandial glucose levels were decreased by 48.7±10.3 mg/dL (P<0.001). Multiple logistic regression showed old age (odds ratio [OR], 1.25; 95% confidence interval [CI], 1.02 to 1.55), high initial A1c (OR, 22.21; 95% CI, 2.44 to 201.78), and lower amounts of glargine (OR, 0.85; 95% CI, 0.76 to 0.99), and glimepiride (OR, 0.23; 95% CI, 0.06 to 0.93) at baseline were independently associated with good responders whose A1c reduction was more than 0.5%.ConclusionThe authors suggest a basal plus regimen may be effective in reducing glucose levels of subjects with old age, high initial A1c, and patients on low doses of glimepiride and glargine. Despite the use of high doses of hypoglycemic agents, elderly patients with poorly-controlled diabetes are preferred for early initiation of the basal plus regimen

    The management of type 2 diabetes with fixed‐ratio combination insulin degludec/liraglutide (IDegLira) versus basal‐bolus therapy (insulin glargine U100 plus insulin aspart): a short‐term cost‐effectiveness analysis in the UK setting

    Get PDF
    Aim: To evaluate the cost‐effectiveness of IDegLira versus basal‐bolus therapy (BBT) with insulin glargine U100 plus up to 4 times daily insulin aspart for the management of type 2 diabetes in the UK. Methods: A Microsoft Excel model was used to evaluate the cost‐utility of IDegLira versus BBT over a 1‐year time horizon. Clinical input data were taken from the treat‐to‐target DUAL VII trial, conducted in patients unable to achieve adequate glycaemic control (HbA1c &lt;7.0%) with basal insulin, with IDegLira associated with lower rates of hypoglycaemia and reduced body mass index (BMI) in comparison with BBT, with similar HbA1c reductions. Costs (expressed in GBP) and event‐related disutilities were taken from published sources. Extensive sensitivity analyses were performed. Results: IDegLira was associated with an improvement of 0.05 quality‐adjusted life years (QALYs) versus BBT, due to reductions in non‐severe hypoglycaemic episodes and BMI with IDegLira. Costs were higher with IDegLira by GBP 303 per patient, leading to an incremental cost‐effectiveness ratio (ICER) of GBP 5924 per QALY gained for IDegLira versus BBT. ICERs remained below GBP 20 000 per QALY gained across a range of sensitivity analyses. Conclusions: IDegLira is a cost‐effective alternative to BBT with insulin glargine U100 plus insulin aspart, providing equivalent glycaemic control with a simpler treatment regimen for patients with type 2 diabetes inadequately controlled on basal insulin in the UK
    corecore