569 research outputs found

    Evaluation of Daphnia magna as an indicator of Toxicity and Treatment efficacy of Municipal Sewage Treatment Plant

    Get PDF
    Performance evaluation of wastewater treatment plants (WWTPs) with special reference to toxicity reduction using Daphnia magna straus as test organism is very important to study the likely adverse effects of thetreated wastewater on the aquatic ecosystem of receiving waters and to detect common environmentally realistic concentrations of pollutants at different concentration levels and toxicity discriminatory ability to distinguish different degree of toxicity and toxic specificity of the compounds on target organisms. This test can be considered asuseful analytical tool for screening of chemical analysis and early warning system to monitor the different operational units of wastewater treatment plants. Interrelationship between COD, SS with respect to Daphnia toxicity (Gd) suggests that improvement of the toxicological quality of wastewater could be linked to the removal of both COD and suspended solids. Both the parameters (COD & SS) can serve as a regulatory tool in lieu of an explicit toxicological standard. An important feature of this work was to emphasize the significance of toxicity tests. It could help to reduceinfluent toxicity and thereby avoid impacting microorganisms’ population in activated sludge systems. This study shows the difference between using physico-chemical and biological criteria to define the quality or toxicity ofwastewater, making it clear that both methods are indispensable and complimentary and support the earlier view that Daphnia magna can serve as a valuable model for bio- monitoring of water pollution and for evaluation of the toxicity of an effluent and risk assessment in an aquatic body, as it is highly sensitive to pollutants

    Rhizosphere of rice plants harbor bacteria with multiple plant growth promoting features

    Get PDF
    114 diazotrophic bacteria from the rice rhizosphere of five districts of Eastern Uttar Pradesh (India) were isolated and screened for plant growth promoting (PGP) activities employing standard microbiological and biochemical techniques. All these isolates showed nitrogenase activity in the range of 0.23 to 1.72 μmol C2H4 mg-1 protein h-1. Further analysis showed that 84 (73.68%) isolates were Indole-3-acetic acid (IAA) producer; the value of IAA production ranged from 10.1 to 353.0 μg IAA mg-1 protein. IAA production occurred solely in the medium supplemented with tryptophan. P solubilization activity was observed in 28 (24.56%) isolates, the activity being in the range of 38.50 to 321.0 P released μg mg-1 protein. 45 (39.46%) isolates were capable of producing siderophore, the range of production being 4.50 to 223.26 μg mg-1 protein. Analysis of molecular diversity was made by amplified ribosomal DNA restriction analysis (ARDRA) and denaturating gradient gel electrophoresis (DGGE), which exhibited distinct differences among all the isolates. Of the 114 isolates, twenty one (21) isolates showed multiple plant growth promoting traits and were potent in terms of PGP activities. These isolates were identified on the basis of 16S rDNA sequencing and belonged to the genera Pantoea, Bacillus, Microbacterium, Pseudomonas, Sphingomonas, Ancylobacter, Enterobacter, Advenella, γ-proteobacterium strain VA3S1, Rhizobium and Agrobacterium. Findings of this study suggest that certain isolates may be exploited for developing a potential source of biofertilizer.Key words: Plant growth promoting rhizobacteria, N2 fixation, amplified ribosomal DNA restriction analysis, indole-3-acetic acid, siderophore, denaturing gradient gel electrophoresis, temperature gradient gel electrophoresi

    Effect of Rhizophagus intraradices on growth and physiological performance of Finger Millet (Eleusine coracana L.) under drought stress

    Get PDF
    Under abiotic stress conditions, arbuscular mycorrhizal (AM) fungi help plants by improving nutrient and water uptake. Finger millet (Eleusine coracana L.) is an arid crop having soils with poor water holding capacity. Therefore, it is difficult for the plants to obtain water and mineral nutrients from such soil to sustain life. To understand the role of mycorrhizal symbiosis in water and mineral up-take from the soil, we studied the role of Rhizophagus intraradices colonization and its beneficial role for drought stress tolerance in finger millet seedlings. Under severe drought stress condition, AM inoculation led to the significant increase in plant growth (7 %), phosphorus and chlorophyll content (29 %). Also, under drought stress the level of osmolytes such as proline and soluble sugars were found to be increased in AM inoculated seedlings. Under water stress, the lipid peroxidation in leaves of mycorrhized seedlings was reduced by 29 %. The flavonoid content of roots in AM colonized seedlings was found 16 % higher compared to the control, whereas the leaves were accumulated more phenol. Compared to the control, ascorbate level was found to be 25 % higher in leaf tissue of AM inoculated seedlings. Moreover, glutathione (GSH) level was also increased in mycorrhiza inoculated seedlings with a maximum increment of 182 % under severe stress. The results demonstrated that AM provided drought tolerance to the finger millet seedlings through a stronger root system, greater photosynthetic efficiency, a more efficient antioxidant system and improved osmoregulation

    Liquid and vapour-phase antifungal activities of selected essential oils against candida albicans: microscopic observations and chemical characterization of cymbopogon citratus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Use of essential oils for controlling <it>Candida albicans </it>growth has gained significance due to the resistance acquired by pathogens towards a number of widely-used drugs. The aim of this study was to test the antifungal activity of selected essential oils against <it>Candida albicans </it>in liquid and vapour phase and to determine the chemical composition and mechanism of action of most potent essential oil.</p> <p>Methods</p> <p>Minimum Inhibitory concentration (MIC) of different essential oils in liquid phase, assayed through agar plate dilution, broth dilution & 96-well micro plate dilution method and vapour phase activity evaluated through disc volatilization method. Reduction of <it>C. albicans </it>cells with vapour exposure was estimated by kill time assay. Morphological alteration in treated/untreated <it>C. albicans </it>cells was observed by the Scanning electron microscopy (SEM)/Atomic force microscopy (AFM) and chemical analysis of the strongest antifungal agent/essential oil has been done by GC, GC-MS.</p> <p>Results</p> <p>Lemon grass (<it>Cymbopogon citratus</it>) essential oil exhibited the strongest antifungal effect followed by mentha (<it>Mentha piperita</it>) and eucalyptus (<it>Eucalyptus globulus</it>) essential oil. The MIC of lemon grass essential oil in liquid phase (288 mg/l) was significantly higher than that in the vapour phase (32.7 mg/l) and a 4 h exposure was sufficient to cause 100% loss in viability of <it>C. albicans </it>cells. SEM/AFM of <it>C. albicans </it>cells treated with lemon grass essential oil at MIC level in liquid and vapour phase showed prominent shrinkage and partial degradation, respectively, confirming higher efficacy of vapour phase. GC-MS analysis revealed that lemon grass essential oil was dominated by oxygenated monoterpenes (78.2%); α-citral or geranial (36.2%) and β-citral or neral (26.5%), monoterpene hydrocarbons (7.9%) and sesquiterpene hydrocarbons (3.8%).</p> <p>Conclusion</p> <p>Lemon grass essential oil is highly effective in vapour phase against <it>C. albicans</it>, leading to deleterious morphological changes in cellular structures and cell surface alterations.</p

    Piperidinols that show anti-tubercular activity as inhibitors of arylamine N-acetyltransferase: an essential enzyme for mycobacterial survival inside macrophages

    Get PDF
    Latent M. tuberculosis infection presents one of the major obstacles in the global eradication of tuberculosis (TB). Cholesterol plays a critical role in the persistence of M. tuberculosis within the macrophage during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into cell-wall lipids. Arylamine N-acetyltransferase (NAT) is encoded within a gene cluster that is involved in the cholesterol sterol-ring degradation and is essential for intracellular survival. The ability of the NAT from M. tuberculosis (TBNAT) to utilise propionyl-CoA links it to the cholesterol-catabolism pathway. Deleting the nat gene or inhibiting the NAT enzyme prevents intracellular survival and results in depletion of cell-wall lipids. TBNAT has been investigated as a potential target for TB therapies. From a previous high-throughput screen, 3-benzoyl-4-phenyl-1-methylpiperidinol was identified as a selective inhibitor of prokaryotic NAT that exhibited antimycobacterial activity. The compound resulted in time-dependent irreversible inhibition of the NAT activity when tested against NAT from M. marinum (MMNAT). To further evaluate the antimycobacterial activity and the NAT inhibition of this compound, four piperidinol analogues were tested. All five compounds exert potent antimycobacterial activity against M. tuberculosis with MIC values of 2.3-16.9 µM. Treatment of the MMNAT enzyme with this set of inhibitors resulted in an irreversible time-dependent inhibition of NAT activity. Here we investigate the mechanism of NAT inhibition by studying protein-ligand interactions using mass spectrometry in combination with enzyme analysis and structure determination. We propose a covalent mechanism of NAT inhibition that involves the formation of a reactive intermediate and selective cysteine residue modification. These piperidinols present a unique class of antimycobacterial compounds that have a novel mode of action different from known anti-tubercular drugs

    Comparison of immature and mature bone marrow-derived dendritic cells by atomic force microscopy

    Get PDF
    A comparative study of immature and mature bone marrow-derived dendritic cells (BMDCs) was first performed through an atomic force microscope (AFM) to clarify differences of their nanostructure and adhesion force. AFM images revealed that the immature BMDCs treated by granulocyte macrophage-colony stimulating factor plus IL-4 mainly appeared round with smooth surface, whereas the mature BMDCs induced by lipopolysaccharide displayed an irregular shape with numerous pseudopodia or lamellapodia and ruffles on the cell membrane besides becoming larger, flatter, and longer. AFM quantitative analysis further showed that the surface roughness of the mature BMDCs greatly increased and that the adhesion force of them was fourfold more than that of the immature BMDCs. The nano-features of the mature BMDCs were supported by a high level of IL-12 produced from the mature BMDCs and high expression of MHC-II on the surface of them. These findings provide a new insight into the nanostructure of the immature and mature BMDCs

    Characterization of Particles in Protein Solutions: Reaching the Limits of Current Technologies

    Get PDF
    Recent publications have emphasized the lack of characterization methods available for protein particles in a size range comprised between 0.1 and 10 μm and the potential risk of immunogenicity associated with such particles. In the present paper, we have investigated the performance of light obscuration, flow microscopy, and Coulter counter instruments for particle counting and sizing in protein formulations. We focused on particles 2–10 μm in diameter and studied the effect of silicon oil droplets originating from the barrel of pre-filled syringes, as well as the effect of high protein concentrations (up to 150 mg/ml) on the accuracy of particle characterization. Silicon oil was demonstrated to contribute significantly to the particle counts observed in pre-filled syringes. Inconsistent results were observed between different protein concentrations in the range 7.5–150 mg/ml for particles <10 μm studied by optical techniques (light obscuration and flow microscopy). However, the Coulter counter measurements were consistent across the same studied concentration range but required sufficient solution conductivity from the formulation buffer or excipients. Our results show that currently available technologies, while allowing comparisons between samples of a given protein at a fixed concentration, may be unable to measure particle numbers accurately in a variety of protein formulations, e.g., at high concentration in sugar-based formulations

    Assignment of PolyProline II Conformation and Analysis of Sequence – Structure Relationship

    Get PDF
    International audienceBACKGROUND: Secondary structures are elements of great importance in structural biology, biochemistry and bioinformatics. They are broadly composed of two repetitive structures namely α-helices and β-sheets, apart from turns, and the rest is associated to coil. These repetitive secondary structures have specific and conserved biophysical and geometric properties. PolyProline II (PPII) helix is yet another interesting repetitive structure which is less frequent and not usually associated with stabilizing interactions. Recent studies have shown that PPII frequency is higher than expected, and they could have an important role in protein - protein interactions. METHODOLOGY/PRINCIPAL FINDINGS: A major factor that limits the study of PPII is that its assignment cannot be carried out with the most commonly used secondary structure assignment methods (SSAMs). The purpose of this work is to propose a PPII assignment methodology that can be defined in the frame of DSSP secondary structure assignment. Considering the ambiguity in PPII assignments by different methods, a consensus assignment strategy was utilized. To define the most consensual rule of PPII assignment, three SSAMs that can assign PPII, were compared and analyzed. The assignment rule was defined to have a maximum coverage of all assignments made by these SSAMs. Not many constraints were added to the assignment and only PPII helices of at least 2 residues length are defined. CONCLUSIONS/SIGNIFICANCE: The simple rules designed in this study for characterizing PPII conformation, lead to the assignment of 5% of all amino as PPII. Sequence - structure relationships associated with PPII, defined by the different SSAMs, underline few striking differences. A specific study of amino acid preferences in their N and C-cap regions was carried out as their solvent accessibility and contact patterns. Thus the assignment of PPII can be coupled with DSSP and thus opens a simple way for further analysis in this field
    corecore