7 research outputs found

    Twentieth century increase in snowfall in coastal West Antarctica

    Get PDF
    The Amundsen Sea sector of the West Antarctic ice sheet has been losing mass in recent decades; however, long records of snow accumulation are needed to place the recent changes in context. Here we present 300 year records of snow accumulation from two ice cores drilled in Ellsworth Land, West Antarctica. The records show a dramatic increase in snow accumulation during the twentieth century, linked to a deepening of the Amundsen Sea Low (ASL), tropical sea surface temperatures, and large-scale atmospheric circulation. The observed increase in snow accumulation and interannual variability during the late twentieth century is unprecedented in the context of the past 300 years and evidence that the recent deepening of the ASL is part of a longer trend

    Climate and surface mass balance of coastal West Antarctica resolved by regional climate modelling

    Get PDF
    West Antarctic climate and surface mass balance (SMB) records are sparse. To fill this gap, regional atmospheric climate modelling is useful, providing that such models are employed at sufficiently high horizontal resolution and coupled with a snow model. Here we present the results of a high-resolution (5.5 km) regional atmospheric climate model (RACMO2) simulation of coastal West Antarctica for the period 1979–2015. We evaluate the results with available in situ weather observations, remote-sensing estimates of surface melt, and SMB estimates derived from radar and firn cores. Moreover, results are compared with those from a lower-resolution version, to assess the added value of the resolution. The high-resolution model resolves small-scale climate variability invoked by topography, such as the relatively warm conditions over ice-shelf grounding zones, and local wind speed accelerations. Surface melt and SMB are well reproduced by RACMO2. This dataset will prove useful for picking ice core locations, converting elevation changes to mass changes, for driving ocean, ice-sheet and coupled models, and for attributing changes in the West Antarctic Ice Sheet and shelves to changes in atmospheric forcing

    The genomics of heart failure: design and rationale of the HERMES consortium

    Get PDF
    Aims The HERMES (HEart failure Molecular Epidemiology for Therapeutic targets) consortium aims to identify the genomic and molecular basis of heart failure.Methods and results The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome-wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow-up following heart failure diagnosis ranged from 2 to 116 months. Forty-nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34-90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of >1.10 for common variants (allele frequency > 0.05) and >1.20 for low-frequency variants (allele frequency 0.01-0.05) at P Conclusions HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction.</p

    The genomics of heart failure: design and rationale of the HERMES consortium

    Get PDF
    Aims: The HERMES (HEart failure Molecular Epidemiology for Therapeutic targetS) consortium aims to identify the genomic and molecular basis of heart failure. Methods and results: The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome‐wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow‐up following heart failure diagnosis ranged from 2 to 116 months. Forty‐nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34–90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of ≄1.10 for common variants (allele frequency ≄ 0.05) and ≄1.20 for low‐frequency variants (allele frequency 0.01–0.05) at P &lt; 5 × 10−8 under an additive genetic model. Conclusions: HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Observations of surface mass balance on Pine Island Glacier, West Antarctica, and the effect of strain history in fast-flowing sections

    Get PDF
    Surface mass balance (SMB) is the net input of mass on a glacier's upper surface, composed of snow deposition, melt and erosion processes, and is a major contributor to the overall mass balance. Pine Island Glacier (PIG) in West Antarctica has been dynamically imbalanced since the early 1990s, indicating that discharge of solid ice into the oceans exceeds snow deposition. However, observations of the SMB pattern on the fast flowing regions are scarce, and are potentially affected by the firn's strain history. Here, we present new observations from radar-derived stratigraphy and a relatively dense network of firn cores, collected along a ~900 km traverse of PIG. Between 1986 and 2014, the SMB along the traverse was 0.505 m w.e. a−1 on average with a gradient of higher snow deposition in the South-West compared with the North-East of the catchment. We show that along ~80% of the traverse the strain history amounts to a misestimation of SMB below the nominal uncertainty, but can exceed it by a factor 5 in places, making it a significant correction to the SMB estimate locally. We find that the strain correction changes the basin-wide SMB by ~0.7 Gt a−1 and thus forms a negligible (1%) correction to the glacier's total SMB
    corecore