76 research outputs found

    Studies on membrane topology, N-glycosylation and functionality of SARS-CoV membrane protein

    Get PDF
    The glycosylated membrane protein M of the severe acute respiratory syndrome associated coronavirus (SARS-CoV) is the main structural component of the virion and mediates assembly and budding of viral particles. The membrane topology of SARS-CoV M and the functional significance of its N-glycosylation are not completely understood as is its interaction with the surface glycoprotein S. Using biochemical and immunofluorescence analyses we found that M consists of a short glycosylated N-terminal ectodomain, three transmembrane segments and a long, immunogenic C-terminal endodomain. Although the N-glycosylation site of M seems to be highly conserved between group 1 and 3 coronaviruses, studies using a recombinant SARS-CoV expressing a glycosylation-deficient M revealed that N-glycosylation of M neither influence the shape of the virions nor their infectivity in cell culture. Further functional analysis of truncated M proteins showed that the N-terminal 134 amino acids comprising the three transmembrane domains are sufficient to mediate accumulation of M in the Golgi complex and to enforce recruitment of the viral spike protein S to the sites of virus assembly and budding in the ERGIC

    Regulation of peripheral T cell activation by calreticulin

    Get PDF
    Regulated expression of positive and negative regulatory factors controls the extent and duration of T cell adaptive immune response preserving the organism's integrity. Calreticulin (CRT) is a major Ca2+ buffering chaperone in the lumen of the endoplasmic reticulum. Here we investigated the impact of CRT deficiency on T cell function in immunodeficient mice reconstituted with fetal liver crt−/− hemopoietic progenitors. These chimeric mice displayed severe immunopathological traits, which correlated with a lower threshold of T cell receptor (TCR) activation and exaggerated peripheral T cell response to antigen with enhanced secretion of inflammatory cytokines. In crt−/− T cells TCR stimulation induced pulsatile cytosolic elevations of Ca2+ concentration and protracted accumulation of nuclear factor of activated T cells in the nucleus as well as sustained activation of the mitogen-activated protein kinase pathways. These observations support the hypothesis that CRT-dependent shaping of Ca2+ signaling critically contributes to the modulation of the T cell adaptive immune response

    631 rankl knock out mesenchymal stromal cells have an unexpected osteogenic differentiation defect which is improved by a rankl expressing lentiviral vector

    Get PDF
    Osteoclast-poor RANKL-dependent Autosomal Recessive Osteopetrosis (ARO) is a rare bone disease characterized by an increase in bone density due to the failure of bone resorption by impaired osteoclast formation. Hematopoietic stem cell transplantation is not an effective therapy for this ARO form, since in bone RANKL is produced mainly by cells of mesenchymal origin. Therefore Mesenchymal Stromal Cells (MSC) transplantation together with a gene-therapy strategy to correct RANKL defect in MSC could represent a possible effective therapy. Of note, whether also MSC, besides the osteoclasts, are affected by RANKL deficiency is unknown. To verify this, we established and characterized bone marrow derived MSC (BM-MSC) lines from the Rankl−/− (KO) mouse model, which recapitulates the human disease, and from wild type (WT) mice. No differences were found between KO and WT MSC in terms of morphology, immunophenotype and proliferation capacity. However, KO MSC displayed a reduced clonogenic potential with a decrease in stemness genes expression. KO MSC were able to normally differentiate towards the adipogenic and chondrogenic lineages, while showed a significantly impaired osteogenic differentiation capacity compared to WT MSC, as demonstrated by reduced Alizarin Red staining (ARS) and expression of osteogenic genes. To confirm that this alteration was due to the lack of functional RANKL, we developed a third generation lentiviral vector expressing human soluble RANKL (hsRL) for the genetic correction of KO MSC. We first investigated lentiviral transduction in 293T cells to optimize transduction efficiency at different multiplicity of infection (MOI) ranging from 1 to 100. hsRL production increased proportionally to the MOI and was stable over time. However, the higher the MOI the higher the cytotoxicity observed. Based on these data, we performed a lentiviral hsRL transduction in KO MSC at 20 and 50 MOI, to define the optimal transduction conditions. After transduction 99.5% of MSC were GFP+. While in Rankl−/− control cells the cytokine was not detected, in corrected cells hsRL production and secretion was measurable and comparable to sRL levels in WT mouse. KO MSC stably expressing hsRL showed an improved osteogenic differentiation capacity compared to untransduced KO MSC, as demonstrated by increased ARS and expression of osteogenic genes. Moreover, the expression of RANK receptor in both MSC suggested an autocrine role of sRL as possible mechanism. Our data suggest that restoration of RANKL production in lentiviral-transduced KO MSC might not only allow osteoclast differentiation in Rankl−/− mice upon transplantation, but also improve the osteogenic differentiation defect of KO MSC

    Critical role of WASp in germinal center tolerance through regulation of B cell apoptosis and diversification

    Get PDF
    This project was supported by grant 310030-179251 from the Suisse National Science Foundation (SNF) (to F.C.), funds from the BLACKSWAN Foundation (BSF-005) (to M.D.), and the Wellcome Trust (to A.J.T.).A main feature of Wiskott-Aldrich syndrome (WAS) is increased susceptibility to autoimmunity. A key contribution of B cells to development of these complications has been demonstrated through studies of samples from affected individuals and mouse models of the disease, but the role of the WAS protein (WASp) in controlling peripheral tolerance has not been specifically explored. Here we show that B cell responses remain T cell dependent in constitutive WASp-deficient mice, whereas selective WASp deletion in germinal center B cells (GCBs) is sufficient to induce broad development of self-reactive antibodies and kidney pathology, pointing to loss of germinal center tolerance as a primary cause leading to autoimmunity. Mechanistically, we show that WASp is upregulated in GCBs and regulates apoptosis and plasma cell differentiation in the germinal center and that the somatic hypermutation-derived diversification is the basis of autoantibody development.Publisher PDFPeer reviewe

    Critical role of WASp in germinal center tolerance through regulation of B cell apoptosis and diversification

    Get PDF
    A main feature of Wiskott-Aldrich syndrome (WAS) is increased susceptibility to autoimmunity. A key contribution of B cells to development of these complications has been demonstrated through studies of samples from affected individuals and mouse models of the disease, but the role of the WAS protein (WASp) in controlling peripheral tolerance has not been specifically explored. Here we show that B cell responses remain T cell dependent in constitutive WASp-deficient mice, whereas selective WASp deletion in germinal center B cells (GCBs) is sufficient to induce broad development of self-reactive antibodies and kidney pathology, pointing to loss of germinal center tolerance as a primary cause leading to autoimmunity. Mechanistically, we show that WASp is upregulated in GCBs and regulates apoptosis and plasma cell differentiation in the germinal center and that the somatic hypermutation-derived diversification is the basis of autoantibody development

    Unsuspected role of the brain morphogenetic gene Otx1 in hematopoiesis

    Get PDF
    Otx1 belongs to the paired class of homeobox genes and plays a pivotal role in brain development. Here, we show that Otx1 is expressed in hematopoietic pluripotent and erythroid progenitor cells. Moreover, bone marrow cells from mice lacking Otx1 exhibit a cell-autonomous impairment of the erythroid compartment. In agreement with these results, molecular analysis revealed decreased levels of erythroid genes that include the SCL and GATA-1 transcription factors. Accordingly, a gain of function of SCL rescues the erythroid deficiency in Otx1-/- mice. Taken together, our findings indicate a function for Otx1 in the regulation of blood cell production. There is growing evidence suggesting that common cellular and molecular mechanisms orchestrate differentiation in various tissues. Homeobox-containing genes seem to be strong candidate genes to regulate a number of developmental processes, including neurogenesis and hematopoiesis. Members of the Otx family (Otx1, Otx2, Otx3, and Crx) are the vertebrate homologues of the Drosophila head gap gene orthodenticle and encode transcription factors containing a bicoid-like homeodomain. They are temporally and spatially regulated during development and seem to be required for proper head and sense organ patterning. Otx1, Otx2, and Otx3 show partially overlapping, but distinct expression patterns, and Otx2, the first to be activated during development, plays a major role in gastrulation and in the early specification of the anterior neural plate. In contrast, Otx1 shows a later onset and is involved in corticogenesis, sense organ development, and pituitary function. Mice bearing targeted deletion of Otx1 are affected by a permanent epileptic phenotype and show multiple brain abnormalities and morphological defects of the acoustic and visual sense organs. In addition, at the prepubescent stage, they exhibit transient dwarfism and hypogonadism because of low levels of pituitary hormones. In the present study, we have investigated whether Otx1 also plays a role in blood cell production, as several homeobox genes of different families are involved in normal and/or malignant hematopoiesis

    Selective preservation of bone marrow mature recirculating but not marginal zone B cells in murine models of chronic inflammation

    Get PDF
    Inflammation promotes granulopoiesis over B lymphopoiesis in the bone marrow (BM). We studied B cell homeostasis in two murine models of T cell mediated chronic inflammation, namely calreticulin-deficient fetal liver chimeras (FLC), which develop severe blepharitis and alopecia due to T cell hyper responsiveness, and inflammatory bowel disease (IBD) caused by injection of CD4+ naïve T cells into lymphopenic mice. We show herein that despite the severe depletion of B cell progenitors during chronic, peripheral T cell-mediated inflammation, the population of BM mature recirculating B cells is unaffected. These B cells are poised to differentiate to plasma cells in response to blood borne pathogens, in an analogous fashion to non-recirculating marginal zone (MZ) B cells in the spleen. MZ B cells nevertheless differentiate more efficiently to plasma cells upon polyclonal stimulation by Toll-like receptor (TLR) ligands, and are depleted during chronic T cell mediated inflammation in vivo. The preservation of mature B cells in the BM is associated with increased concentration of macrophage migration inhibitory factor (MIF) in serum and BM plasma. MIF produced by perivascular dendritic cells (DC) in the BM provides a crucial survival signal for recirculating B cells, and mice treated with a MIF inhibitor during inflammation showed significantly reduced mature B cells in the BM. These data indicate that MIF secretion by perivascular DC may promote the survival of the recirculating B cell pool to ensure responsiveness to blood borne microbes despite loss of the MZ B cell pool that accompanies depressed lymphopoiesis during inflammation

    Synthetic Standards Combined With Error and Bias Correction Improve the Accuracy and Quantitative Resolution of Antibody Repertoire Sequencing in Human Naïve and Memory B Cells

    Get PDF
    High-throughput sequencing of immunoglobulin (Ig) repertoires (Ig-seq) is a powerful method for quantitatively interrogating B cell receptor sequence diversity. When applied to human repertoires, Ig-seq provides insight into fundamental immunological questions, and can be implemented in diagnostic and drug discovery projects. However, a major challenge in Ig-seq is ensuring accuracy, as library preparation protocols and sequencing platforms can introduce substantial errors and bias that compromise immunological interpretation. Here, we have established an approach for performing highly accurate human Ig-seq by combining synthetic standards with a comprehensive error and bias correction pipeline. First, we designed a set of 85 synthetic antibody heavy-chain standards (in vitro transcribed RNA) to assess correction workflow fidelity. Next, we adapted a library preparation protocol that incorporates unique molecular identifiers (UIDs) for error and bias correction which, when applied to the synthetic standards, resulted in highly accurate data. Finally, we performed Ig-seq on purified human circulating B cell subsets (naïve and memory), combined with a cellular replicate sampling strategy. This strategy enabled robust and reliable estimation of key repertoire features such as clonotype diversity, germline segment, and isotype subclass usage, and somatic hypermutation. We anticipate that our standards and error and bias correction pipeline will become a valuable tool for researchers to validate and improve accuracy in human Ig-seq studies, thus leading to potentially new insights and applications in human antibody repertoire profiling
    corecore