17 research outputs found

    High-resolution synthetic UV-submm images for Milky Way-mass simulated galaxies from the ARTEMIS project

    Full text link
    We present redshift-zero synthetic dust-aware observations for the 45 Milky Way-mass simulated galaxies of the ARTEMIS project, calculated with the SKIRT radiative transfer code. The post-processing procedure includes components for star-forming regions, stellar sources, and diffuse dust. We produce and publicly release realistic high-resolution images for 50 commonly-used broadband filters from ultraviolet to sub-millimetre wavelengths and for 18 different viewing angles. We compare the simulated ARTEMIS galaxies to observed galaxies in the DustPedia database with similar stellar mass and star formation rate, and to synthetic observations of the simulated galaxies of the Auriga project produced in previous work using a similar post-processing technique. In all cases, global galaxy properties are derived using SED fitting. We find that, similar to Auriga, the post-processed ARTEMIS galaxies generally reproduce the observed scaling relations for global fluxes and physical properties, although dust extinction at FUV/UV wavelengths is underestimated and representative dust temperatures are lower than observed. At a resolved scale, we compare multi-wavelength non-parametric morphological properties of selected disc galaxies across the data sets. We find that the ARTEMIS galaxies largely reproduce the observed morphological trends as a function of wavelength, although they appear to be more clumpy and less symmetrical than observed. We note that the ARTEMIS and Auriga galaxies occupy adjacent regions in the specific star formation versus stellar mass plane, so that the synthetic observation data sets supplement each other.Comment: Accepted for publication by MNRA

    Probing the spectral shape of dust emission with the DustPedia galaxy sample

    Get PDF
    The objective of this paper is to understand the variance of the far-infrared (FIR) spectral energy distribution (SED) of the DustPedia galaxies, and its link with the stellar and dust properties. An interesting aspect of the dust emission is the inferred FIR colours which could inform us about the dust content of galaxies, and how it varies with the physical conditions within galaxies. However, the inherent complexity of dust grains as well as the variety of physical properties depending on dust, hinder our ability to utilise their maximum potential. We use principal component analysis (PCA) to explore new hidden correlations with many relevant physical properties such as the dust luminosity, dust temperature, dust mass, bolometric luminosity, star-formation rate (SFR), stellar mass, specific SFR, dust-to-stellar mass ratio, the fraction of absorbed stellar luminosity by dust (f_abs), and metallicity. We find that 95% of the variance in our sample can be described by two principal components (PCs). The first component controls the wavelength of the peak of the SED, while the second characterises the width. The physical quantities that correlate better with the coefficients of the first two PCs, and thus control the shape of the FIR SED are: the dust temperature, the dust luminosity, the SFR, and f_abs. Finally, we find a weak tendency for low-metallicity galaxies to have warmer and broader SEDs, while on the other hand high-metallicity galaxies have FIR SEDs that are colder and narrower

    High-resolution, 3D radiative transfer modelling : V. A detailed model of the M 51 interacting pair

    Get PDF
    Context. Investigating the dust heating mechanisms in galaxies provides a deeper understanding of how the internal energy balance drives their evolution. Over the last decade radiative transfer simulations based on the Monte Carlo method have emphasised the role of the various stellar populations heating the diffuse dust. Beyond the expected heating through ongoing star formation, older stellar populations (>= 8 Gyr) and even active galactic nuclei can both contribute energy to the infrared emission of diffuse dust.Aims. In this particular study we examine how the radiation of an external heating source, such as the less massive galaxy NGC 5195 in the M 51 interacting system, could affect the heating of the diffuse dust of its parent galaxy NGC 5194, and vice versa. Our goal is to quantify the exchange of energy between the two galaxies by mapping the 3D distribution of their radiation field.Methods. We used SKIRT, a state-of-the-art 3D Monte Carlo radiative transfer code, to construct the 3D model of the radiation field of M 51, following the methodology defined in the DustPedia framework. In the interest of modelling, the assumed centre-to-centre distance separation between the two galaxies is similar to 10 kpc.Results. Our model is able to reproduce the global spectral energy distribution of the system, and it matches the resolved optical and infrared images fairly well. In total, 40.7% of the intrinsic stellar radiation of the combined system is absorbed by dust. Furthermore, we quantify the contribution of the various dust heating sources in the system, and find that the young stellar population of NGC 5194 is the predominant dust-heating agent, with a global heating fraction of 71.2%. Another 23% is provided by the older stellar population of the same galaxy, while the remaining 5.8% has its origin in NGC 5195. Locally, we find that the regions of NGC 5194 closer to NGC 5195 are significantly affected by the radiation field of the latter, with the absorbed energy fraction rising up to 38%. The contribution of NGC 5195 remains under the percentage level in the outskirts of the disc of NGC 5194. This is the first time that the heating of the diffuse dust by a companion galaxy is quantified in a nearby interacting system

    High-resolution, 3D radiative transfer modelling : IV. AGN-powered dust heating in NGC 1068

    Get PDF
    The star formation rate and the mass of interstellar medium (ISM) have a high predictive power for the future evolution of a galaxy. Nevertheless, deriving such properties is not straightforward. Dust emission, an important diagnostic of star formation and ISM mass throughout the Universe, can be powered by sources unrelated to ongoing star formation. In the framework of the DustPedia project we set out to disentangle the radiation of the ongoing star formation from that of the older stellar populations. This is done through detailed 3D radiative transfer simulations of face-on spiral galaxies. We take special care in modelling the morphological features present for each source of radiation. In this particular study, we focus on NGC 1068, which in addition contains an active galactic nucleus (AGN). The effect of diffuse dust heating by an AGN (beyond the torus) has so far only been investigated for quasars. This additional dust heating source further contaminates the broadband fluxes that are used by classic galaxy modelling tools to derive physical properties. We aim to fit a realistic model to the observations of NGC 1068 and quantify the contribution of the several dust-heating sources. Our model is able to reproduce the global spectral energy distribution of the galaxy. It matches the resolved optical and infrared images fairly well, but deviates in the UV and the submillimetre (submm). This is partly due to beam smearing effects, but also because the input dust distribution is not sufficiently peaked in the centre. We find that AGN contamination of the broadband fluxes has a strong dependency on wavelength. It peaks in the mid-infrared, drops in the far-infrared, and then rises again at submm wavelengths. We quantify the contribution of the dust-heating sources in each 3D dust cell and find a median value of 83% for the star formation component. The AGN contribution is measurable at the percentage level in the disc, but quickly increases in the inner few hundred parsecs, peaking above 90%. This is the first time the phenomenon of an AGN heating the diffuse dust beyond its torus is quantified in a nearby star-forming galaxy. NGC 1068 only contains a weak AGN, meaning this effect could be stronger in galaxies with a more luminous AGN. This could significantly impact the derived star formation rates and ISM masses for such systems

    Reproducing the Universe: a comparison between the EAGLE simulations and the nearby DustPedia galaxy sample

    Get PDF
    We compare the spectral energy distributions (SEDs) and inferred physical properties for simulated and observed galaxies at low redshift. We exploit UV-submillimetre mock fluxes of ~7000 z=0 galaxies from the EAGLE suite of cosmological simulations, derived using the radiative transfer code SKIRT. We compare these to ~800 observed galaxies in the UV-submillimetre range, from the DustPedia sample of nearby galaxies. To derive global properties, we apply the SED fitting code CIGALE consistently to both data sets, using the same set of ~80 million models. The results of this comparison reveal overall agreement between the simulations and observations, both in the SEDs and in the derived physical properties, with a number of discrepancies. The optical and far-infrared regimes, and the scaling relations based upon the global emission, diffuse dust and stellar mass, show high levels of agreement. However, the mid-infrared fluxes of the EAGLE galaxies are overestimated while the far-UV domain is not attenuated enough, compared to the observations. We attribute these discrepancies to a combination of galaxy population differences between the samples, and limitations in the subgrid treatment of star-forming regions in the EAGLE-SKIRT post-processing recipe. Our findings show the importance of detailed radiative transfer calculations and consistent comparison, and provide suggestions for improved numerical models.Comment: 17 pages, 14 figures, accepted for publication in MNRA

    Reproducing the dusty Universe in cosmological simulations

    No full text

    The cosmic spectral energy distribution in the EAGLE simulation

    Get PDF
    The cosmic spectral energy distribution (CSED) is the total emissivity as a function of wavelength of galaxies in a given cosmic volume. We compare the observed CSED from the UV to the submm to that computed from the EAGLE (Evolution and Assembly of GaLaxies and their Environments) cosmological hydrodynamical simulation, post-processed with stellar population synthesis models and including dust radiative transfer using the SKIRT code. The agreement with the data is better than 0.15 dex over the entire wavelength range at redshift z = 0, except at UV wavelengths where the EAGLE model overestimates the observed CSED by up to a factor of 2. Global properties of the CSED as inferred from CIGALE fits, such as the stellar mass density, mean star formation density, and mean dust-to-stellar-mass ratio, agree to within better than 20 per cent. At higher redshift, EAGLE increasingly underestimates the CSED at optical–NIR wavelengths with the FIR/submm emissivity underestimated by more than a factor of 5 by redshift z = 1. We believe that these differences are due to a combination of incompleteness of the EAGLE-SKIRT data base, the small simulation volume and the consequent lack of luminous galaxies, and our lack of knowledge on the evolution of the characteristics of the interstellar dust in galaxies. The impressive agreement between the simulated and observed CSED at lower z confirms that the combination of EAGLE and SKIRT dust processing yields a fairly realistic representation of the local Universe

    Infrared luminosity functions and dust mass functions in the EAGLE simulation

    Get PDF
    We present infrared luminosity functions and dust mass functions for the EAGLE cosmological simulation, based on synthetic multiwavelength observations generated with the SKIRT radiative transfer code. In the local Universe, we reproduce the observed infrared luminosity and dust mass functions very well. Some minor discrepancies are encountered, mainly in the high luminosity regime, where the EAGLE-SKIRT luminosity functions mildly but systematically underestimate the observed ones. The agreement between the EAGLE-SKIRT infrared luminosity functions and the observed ones gradually worsens with increasing lookback time. Fitting modified Schechter functions to the EAGLE-SKIRT luminosity and dust mass functions at different redshifts up to z = 1, we find that the evolution is compatible with pure luminosity/mass evolution. The evolution is relatively mild: within this redshift range, we find an evolution of L⋆,250 ∝ (1 + z)1.68, L⋆,TIR ∝ (1 + z)2.51 and M⋆,dust ∝ (1 + z)0.83 for the characteristic luminosity/mass. For the luminosity/mass density we find Δ250 ∝ (1 + z)1.62, ΔTIR ∝ (1 + z)2.35, and ρdust ∝ (1 + z)0.80, respectively. The mild evolution of the dust mass density is in relatively good agreement with observations, but the slow evolution of the infrared luminosity underestimates the observed luminosity evolution significantly. We argue that these differences can be attributed to increasing limitations in the radiative transfer treatment due to increasingly poorer resolution, combined with a slower than observed evolution of the SFR density in the EAGLE simulation and the lack of AGN emission in our EAGLE-SKIRT post-processing recipe

    UV to submillimetre luminosity functions of TNG50 galaxies

    Get PDF
    We apply the radiative transfer (RT) code SKIRT on a sample of ∌14000 low-redshift (z ≀ 0.1) galaxies extracted from the TNG50 simulation to enable an apples-to-apples comparison with observations. The RT procedure is calibrated via comparison of a subsample of TNG50 galaxies with the DustPedia observational sample: we compare several luminosity and colour scaling relations and spectral energy distributions in different specific SFR bins. We consistently derive galaxy luminosity functions for the TNG50 simulation in 14 broad-band filters from UV to submillimetre wavelengths and investigate the effects of the aperture, orientation, radiative transfer recipe, and numerical resolution. We find that, while our TNG50+RT fiducial model agrees well with the observed luminosity functions at the knee (±0.04 dex typical agreement), the TNG50 + RT luminosity functions evaluated within 5R1/2 are generally higher than observed at both the faint and bright ends, by 0.004 (total IR)-0.27 (UKIDSS H) dex and 0.12 (SPIRE250)-0.8 (GALEX FUV) dex, respectively. A change in the aperture does affect the bright end of the luminosity function, easily by up to 1 dex depending on the choice. However, we also find that the galaxy luminosity functions of a worse-resolution run of TNG50 (TNG50-2, with eight times worse mass resolution than TNG50, similar to TNG100) are in better quantitative agreement with observational constraints. Finally, we publicly release the photometry for the TNG50 sample in 53 broad-bands from FUV to submillimetre, in three orientations and four apertures, as well as galaxy spectral energy distributions
    corecore