88 research outputs found
ParaFPGA 2011 : high performance computing with multiple FPGAs : design, methodology and applications
ParaFPGA 2011 marks the third mini-symposium devoted to the methodology, design and implementation of parallel applications using FPGAs. The focus of the contributions is mainly on organizing parallel applications in multiple FPGAs. This includes experiences from building a supercomputer with FPGAs, automatic and dedicated balancing of different tasks on heterogeneous FPGA constellations and designing optimal interconnects between collaborating FPGAs
ParaFPGA 2013: Harnessing Programs, Power and Performance in Parallel FPGA applications
Future computing systems will require dedicated accelerators to achieve high-performance. The mini-symposium ParaFPGA explores parallel computing with FPGAs as an interesting avenue to reduce the gap between the architecture and the application. Topics discussed are the power of functional and dataflow languages, the performance of high-level synthesis tools, the automatic creation of hardware multi-cores using C-slow retiming, dynamic power management to control the energy consumption, real-time reconfiguration of streaming image processing filters and memory optimized event image segmentation
ParaFPGA : parallel computing with flexible hardware
ParaFPGA 2009 is a Mini-Symposium on parallel computing with field programmable gate arrays (FPGAs), held in conjunction with the ParCo conference on parallel computing. FPGAs allow to map an algorithm directly onto the hardware, optimize the architecture for parallel execution, and dynamically reconfigure the system in between different phases of the computation. Compared to e.g. Cell processors, GPGPU's (general-purpose GPU's) and other high-performance devices, FPGAs are considered as flexible hardware in the sense that the building blocks of one or more single or multiple FPGAs can be interconnected freely to build a highly parallel system. In this Mini-Symposium the following topics are addressed: clustering FPGAs, evolvable hardware using FPGAs and fast dynamic reconfiguration
ParaFPGA15 : exploring threads and trends in programmable hardware
The symposium ParaFPGA focuses on parallel techniques using FPGAs as accelerator in high performance computing. The green computing aspects of low power consumption at high performance were somewhat tempered by long design cycles and hard programmability issues. However, in recent years FPGAs have become new contenders as versatile compute accelerators because of a growing market interest, extended application domains and maturing high-level synthesis tools. The keynote paper highlights the historical and modern approaches to high-level FPGA and the contributions cover applications such as NP-complete satisfiability problems and convex hull image processing as well as performance evaluation, partial reconfiguration and systematic design exploration
Performance and resource modeling for FPGAs using high-level synthesis tools
High-performance computing with FPGAs is gaining momentum with the advent of sophisticated High-Level Synthesis (HLS) tools. The performance of a design is impacted by the input-output bandwidth, the code optimizations and the resource consumption, making the performance estimation a challenge. This paper proposes a performance model which extends the roofline model to take into account the resource consumption and the parameters used in the HLS tools. A strategy is developed which maximizes the performance and the resource utilization within the area of the FPGA. The model is used to optimize the design exploration of a class of window-based image processing application
Evaluation of classical machine learning techniques towards urban sound recognition embedded systems
Automatic urban sound classification is a desirable capability for urban monitoring systems, allowing real-time monitoring of urban environments and recognition of events. Current embedded systems provide enough computational power to perform real-time urban audio recognition. Using such devices for the edge computation when acting as nodes of Wireless Sensor Networks (WSN) drastically alleviates the required bandwidth consumption. In this paper, we evaluate classical Machine Learning (ML) techniques for urban sound classification on embedded devices with respect to accuracy and execution time. This evaluation provides a real estimation of what can be expected when performing urban sound classification on such constrained devices. In addition, a cascade approach is also proposed to combine ML techniques by exploiting embedded characteristics such as pipeline or multi-thread execution present in current embedded devices. The accuracy of this approach is similar to the traditional solutions, but provides in addition more flexibility to prioritize accuracy or timing
Exploiting partial reconfiguration through PCIe for a microphone array network emulator
The current Microelectromechanical Systems (MEMS) technology enables the deployment of relatively low-cost wireless sensor networks composed of MEMS microphone arrays for accurate sound source localization. However, the evaluation and the selection of the most accurate and power-efficient network’s topology are not trivial when considering dynamic MEMS microphone arrays. Although software simulators are usually considered, they consist of high-computational intensive tasks, which require hours to days to be completed. In this paper, we present an FPGA-based platform to emulate a network of microphone arrays. Our platform provides a controlled simulated acoustic environment, able to evaluate the impact of different network configurations such as the number of microphones per array, the network’s topology, or the used detection method. Data fusion techniques, combining the data collected by each node, are used in this platform. The platform is designed to exploit the FPGA’s partial reconfiguration feature to increase the flexibility of the network emulator as well as to increase performance thanks to the use of the PCI-express high-bandwidth interface. On the one hand, the network emulator presents a higher flexibility by partially reconfiguring the nodes’ architecture in runtime. On the other hand, a set of strategies and heuristics to properly use partial reconfiguration allows the acceleration of the emulation by exploiting the execution parallelism. Several experiments are presented to demonstrate some of the capabilities of our platform and the benefits of using partial reconfiguration
- …