
ParaFPGA15: Exploring threads and trends

in programmable hardware

Erik H. D’Hollander
a,1

 , Dirk Stroobandt

a
and Abdellah Touhafi

b

a
 ELIS department, Ghent University, Belgium

b
 ETRO department, Vrije Universiteit Brussel, Belgium

Abstract. The symposium ParaFPGA focuses on parallel techniques using FPGAs
as accelerator in high performance computing. The green computing aspects of

low power consumption at high performance were somewhat tempered by long

design cycles and hard programmability issues. However, in recent years FPGAs
have become new contenders as versatile compute accelerators because of a

growing market interest, extended application domains and maturing high-level

synthesis tools. The keynote paper highlights the historical and modern approaches
to high-level FPGA programming and the contributions cover applications such as

NP-complete satisfiability problems and convex hull image processing as well as

performance evaluation, partial reconfiguration and systematic design exploration.

Keywords. FPGA performance, high-level synthesis, OpenCL, functional

programming, satisfiability problem, image processing

Introduction

After hyping expectations on the role of FPGAs in high performance and low power

computing, data centers, internet of things, streaming applications, accelerators and

extensions, there is a general consensus that a lot of work needs to be done. FPGAs in

SoC and datacenters are on the downward slide in Gartner’s hype cycle but the same

company hints that a significant research effort is underway to optimize the

productivity and acceptance in promising application domains [1]. At the same time,

FPGAs evolve in speed and complexity to programmable processing systems with an

integrated logic fabric and specialized IP cores. In addition, the major vendors have

gone long strides to accelerate the design cycle with high level synthesis tools and

standardized languages such as OpenCL. This makes the FPGA arena a prosperous

playfield for research and innovation. The fifth edition of ParaFPGA, Parallel

Computing with FPGAs, follows this trend with papers covering NP-hard problems,

image processing, high-level synthesis and heterogeneous computing.

1. Contributions

The keynote paper “FPGAs as Components in Heterogeneous High-Performance

Computing Systems: Raising the Abstraction Level” [2] discusses the historical

1
 Corresponding Author. E-mail: erik.dhollander@elis.ugent.be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/132628393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

initiatives and trends in high level synthesis over the three ages of FPGAs. In order to

maintain correctness and productivity, HLS languages should have an affine mapping

onto the hardware components. The author advocates a functional language paradigm

to express parallel and pipelining operations in an implicit and effective way. While

OpenCL is a viable alternative because of its cross platform compatibility, the compute

model behind this language foregoes the inherent coarse-grain pipelining capabilities of

FPGAs [3].

FPGAs are well fit for 7 non-numerical problems defined in the 13 dwarfs

prototype paradigms for parallel computing — a dwarf is an algorithmic method that

captures a pattern of computation and communication [4]. Two symposium papers deal

with the NP-complete Boolean satisfiability (SAT) problem of the branch and bound

dwarf. The first paper “FPGA Acceleration of SAT Preprocessor” [5] implements a

new branch and bound technique, “unhiding”, to reduce the search space and to

simplify the Boolean SAT-formula. To this end a binary implication graph (BIG) is

generated from the dependencies between the literals. The literals visited during the

graph traversal receive several “time stamps” to identify their ordering with respect to

several characteristics. Using time stamps it is possible to find tautologies between the

clauses. “Unhiding” means detecting and removing these tautologies. The

implementation of the unhiding-algorithm on a Kintex FPGA is discussed. Ample

parallelism is available in huge formulas with O(10
6
) clauses and variables, however

due to marginal benefits, the parallelism deployed is limited to 16.

In the second paper on satisfiability, “Leveraging FPGA clusters for SAT

computations” [6], a cluster of 200 FPGAs is used to find van der Waerden numbers. A

van der Waerden number W(K,L) is the smallest integer n such that if the positive

consecutive integers {1,2,...,n} are partitioned into K classes, then at least one class

contains an arithmetic progression of length L, i.e. sequence {a, a + d, a + 2d, ..., a +

(L - 1)d} for some integers a and d. Earlier development was done on a Beowulf

cluster [7]. In order to speed up the computation, a Beowulf cluster is replaced by a

cluster of FPGA boards, containing 4 FPGAs, each capable to solve 2 computation

tasks. Using dynamic task assignment on 400 solvers, new van der Waerden numbers

have been identified in a time frame from 6 to 9 months. The paper describes the

hardware and software setup of this application.

Image processing tends to be suited for GPU acceleration. Nevertheless, for

applications with a streamlined data access pattern and irregular computations, FPGAs

may be an interesting alternative. A case in point is the paper “High-Speed Calculation

of Convex Hull in 2D Images Using FPGA” [8] where a fast bounding box calculation

algorithm is described for 640x480 as well as 1920x1080 monochrome images.

Andrew's monotone chain algorithm [9] operates on a stream of sorted input pixels, by

repeatedly evaluating the convexity using he incoming points and incrementally

building the convex hull. In the FPGA, a “trimming step” calculator eliminates

redundant pixels. Next, left- and right half-hull are calculated in parallel and merged

into the complete convex hull. The algorithm is I/O bound for small images and

compute bound for large images. In the GPU implementation the trimming and partial

convex hull calculations do not overlap. As a consequence the FPGA implementation

yields a speedup boost of up to 23 times with respect to the GPU implementation. The

validity of the technique is shown in a surface-mounted device detection application.

Accelerators are commonplace in today’s HPC environment. Still, providing a

common programming language to efficiently use architecturally different accelerators

such as FPGAs and GPUs is quite a challenge. In “Workload Distribution and

Balancing in FPGAs and CPUs with OpenCL and TBB” [10] different accelerator

topologies are used to compute the components of a sliding window object detection

algorithm (filter, histogram, classifier). Interestingly, all accelerators are programmed

with the same OpenCL source code. In the application test case, the accelerators show

comparable performance, but the FPGAs have substantially lower power consumption.

The results of this experiment demonstrate that one standard parallel programming

language may be able to close the semantic gap between accelerators, hindering

unbridled use of heterogeneous computing.

The time to load FPGA designs remains expensive. This can be alleviated by

partial reconfiguration, which allows sharing computing resources between related

tasks. Still a framework is needed to operate dynamic task switching from the

connected CPU. The paper “A Run-Time System for Partially Reconfigurable FPGAs:

The case of STMicroelectronics SPEAr board”[11] describes the experience gained

with a development board connecting a Virtex-5 FPGA accelerator daughter board and

an ARM Cortex A9 dual-core processor. A run-time system manager is presented

which schedules software and hardware tasks, including dynamic reconfiguration of the

FPGA. The benefits and possible improvements of the architecture are explored with a

hardware Ray Tracer application running on the accelerator in parallel with a software

edge detection application running on the processor.

In contrast with accelerators having a fixed architecture, the performance of an

FPGA largely depends on the way the hardware is used. This entails exploring the

reconfigurable design landscape to maximize the performance and minimize the

resource usage. In the paper “Exploring Automatically Generated Platforms in High

Performance FPGAs” [12] a number of heuristics are presented to guide the selection

of memories, bus structures and interfaces. These guidelines are then applied to an

image processing and a Monte Carlo simulation application. Experimental results show

that employing these rules allows to systematically improve the design.

2. Acknowledgement

The organizers of ParaFPGA15 thank the members of the program committee who

provided timely and elaborated reviews helping to maintain the scope and quality of

this symposium.

References

[1] M. Reitz, “Competitive Landscape: FPGA Vendors Closing in on ASICs, ASSPs, the IoT and Security

as Chip Costs Rise, 2014,” Gartner, G00263185, Oct. 2014.
[2] W. Vanderbauwhede, “FPGAs as Components in Heterogeneous High-Performance Computing

Systems: Raising the Abstraction Level,” in Proceedings of the conference Parallel Computing 2015,

Edinburgh, Series Advances in Parallel Computing, Vol. 27, IOS Press, 2015.
[3] H.-S. Kim, M. Ahn, J. A. Stratton, and W. W. Hwu, “Design evaluation of OpenCL compiler

framework for Coarse-Grained Reconfigurable Arrays,” in Field-Programmable Technology (FPT),

2012 International Conference on, 2012, pp. 313–320.
[4] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson, W. L.

Plishker, J. Shalf, S. W. Williams, and others, “The landscape of parallel computing research: A view

from Berkeley,” Technical Report UCB/EECS-2006-183, EECS Department, University of California,
Berkeley, 2006.

[5] M. Suzuki and T. Maruyama, “FPGA Acceleration of SAT Preprocessor,” in Proceedings of the
conference Parallel Computing 2015, Edinburgh, Series Advances in Parallel Computing, Vol. 27, IOS

Press.

[6] M. Kouril, “Leveraging FPGA clusters for SAT computations,” in Proceedings of the conference
Parallel Computing 2015, Edinburgh, Series Advances in Parallel Computing, Vol. 27, IOS Press,

2015.

[7] M. Kouril, “A Backtracking Framework for Beowulf Clusters with an Extension to Multi-cluster
Computation and Sat Benchmark Problem Implementation,” University of Cincinnati, Cincinnati, OH,

USA, 2006.

[8] K. Kanazawa, K. Kemmotsu, Y. Mori, N. Aibe, and M. Yasuanga, “High-Speed Calculation of Convex
Hull in 2D Images Using FPGA,” in Proceedings of the conference Parallel Computing 2015,

Edinburgh, Series Advances in Parallel Computing, Vol. 27, IOS Press, 2015.

[9] A. M. Andrew, “Another efficient algorithm for convex hulls in two dimensions,” Inf. Process. Lett.,
vol. 9, no. 5, pp. 216–219, 1979.

[10] R. Asenjo, A. Navarro, A. Rodriguez, and J. Nunez-Yanez, “Workload distribution and balancing in
FPGAs and CPUs with OpenCL and TBB,” in Proceedings of the conference Parallel Computing 2015,

Edinburgh, Series Advances in Parallel Computing, Vol. 27, IOS Press, 2015.

[11] G. Charitopoulos, D. Pnevmatikos, M. D. Santambrogio, K. Papadimitriou, and D. Pau, “A Run-Time
System for Partially Reconfigurable FPGAs: The case of STMicroelectronics SPEAr board,” in

Proceedings of the conference Parallel Computing 2015, Edinburgh, Series Advances in Parallel

Computing, Vol. 27, IOS Press, 2015.
[12] P. Skrimponis, G. Zindros, I. Parnassos, M. Owaida, N. Bellas, and P. Ienne, “Exploring Automatically

Generated Platforms in High Performance FPGAs,” in Proceedings of the conference Parallel

Computing 2015, Edinburgh, Series Advances in Parallel Computing, Vol. 27, IOS Press, 2015.

