
ParaFPGA15: Exploring threads and trends 

in programmable hardware 

Erik H. D’Hollander
a,1

 , Dirk Stroobandt 

a 
and Abdellah Touhafi

b
 

a
 ELIS department, Ghent University, Belgium 

b
 ETRO department, Vrije Universiteit Brussel, Belgium 

Abstract. The symposium ParaFPGA focuses on parallel techniques using FPGAs 
as accelerator in high performance computing. The green computing aspects of 

low power consumption at high performance were somewhat tempered by long 

design cycles and hard programmability issues. However, in recent years FPGAs 
have become new contenders as versatile compute accelerators because of a 

growing market interest, extended application domains and maturing high-level 

synthesis tools. The keynote paper highlights the historical and modern approaches 
to high-level FPGA programming and the contributions cover applications such as 

NP-complete satisfiability problems and convex hull image processing as well as 

performance evaluation, partial reconfiguration and systematic design exploration. 
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Introduction 

After hyping expectations on the role of FPGAs in high performance and low power 

computing, data centers, internet of things, streaming applications, accelerators and 

extensions, there is a general consensus that a lot of work needs to be done. FPGAs in 

SoC and datacenters are on the downward slide in Gartner’s hype cycle but the same 

company hints that a significant research effort is underway to optimize the 

productivity and acceptance in promising application domains [1]. At the same time, 

FPGAs evolve in speed and complexity to programmable processing systems with an 

integrated logic fabric and specialized IP cores. In addition, the major vendors have 

gone long strides to accelerate the design cycle with high level synthesis tools and 

standardized languages such as OpenCL. This makes the FPGA arena a prosperous 

playfield for research and innovation. The fifth edition of ParaFPGA, Parallel 

Computing with FPGAs, follows this trend with papers covering NP-hard problems, 

image processing, high-level synthesis and heterogeneous computing. 

1. Contributions 

The keynote paper “FPGAs as Components in Heterogeneous High-Performance 

Computing Systems: Raising the Abstraction Level” [2] discusses the historical 
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initiatives and trends in high level synthesis over the three ages of FPGAs. In order to 

maintain correctness and productivity, HLS languages should have an affine mapping 

onto the hardware components. The author advocates a functional language paradigm 

to express parallel and pipelining operations in an implicit and effective way. While 

OpenCL is a viable alternative because of its cross platform compatibility, the compute 

model behind this language foregoes the inherent coarse-grain pipelining capabilities of 

FPGAs [3]. 

FPGAs are well fit for 7 non-numerical problems defined in the 13 dwarfs 

prototype paradigms for parallel computing — a dwarf is an algorithmic method that 

captures a pattern of computation and communication [4]. Two symposium papers deal 

with the NP-complete Boolean satisfiability (SAT) problem of the branch and bound 

dwarf. The first paper “FPGA Acceleration of SAT Preprocessor” [5] implements a 

new branch and bound technique, “unhiding”, to reduce the search space and to 

simplify the Boolean SAT-formula. To this end a binary implication graph (BIG) is 

generated from the dependencies between the literals. The literals visited during the 

graph traversal receive several “time stamps” to identify their ordering with respect to 

several characteristics. Using time stamps it is possible to find tautologies between the 

clauses. “Unhiding” means detecting and removing these tautologies. The 

implementation of the unhiding-algorithm on a Kintex FPGA is discussed. Ample 

parallelism is available in huge formulas with O(10
6
) clauses and variables, however 

due to marginal benefits, the parallelism deployed is limited to 16. 

In the second paper on satisfiability, “Leveraging FPGA clusters for SAT 

computations” [6], a cluster of 200 FPGAs is used to find van der Waerden numbers. A 

van der Waerden number W(K,L) is the smallest integer n such that if the positive 

consecutive integers {1,2,...,n} are partitioned into K classes, then at least one class 

contains an arithmetic progression of length L, i.e. sequence {a, a + d, a + 2d, ..., a + 

(L - 1)d} for some integers a and d. Earlier development was done on a Beowulf 

cluster [7]. In order to speed up the computation, a Beowulf cluster is replaced by a 

cluster of FPGA boards, containing 4 FPGAs, each capable to solve 2 computation 

tasks. Using dynamic task assignment on 400 solvers, new van der Waerden numbers 

have been identified in a time frame from 6 to 9 months. The paper describes the 

hardware and software setup of this application. 

Image processing tends to be suited for GPU acceleration. Nevertheless, for 

applications with a streamlined data access pattern and irregular computations, FPGAs 

may be an interesting alternative. A case in point is the paper “High-Speed Calculation 

of Convex Hull in 2D Images Using FPGA” [8] where a fast bounding box calculation 

algorithm is described for 640x480 as well as 1920x1080 monochrome images. 

Andrew's monotone chain algorithm [9] operates on a stream of sorted input pixels, by 

repeatedly evaluating the convexity using he incoming points and incrementally 

building the convex hull. In the FPGA, a “trimming step” calculator eliminates 

redundant pixels. Next, left- and right half-hull are calculated in parallel and merged 

into the complete convex hull. The algorithm is I/O bound for small images and 

compute bound for large images. In the GPU implementation the trimming and partial 

convex hull calculations do not overlap. As a consequence the FPGA implementation 

yields a speedup boost of up to 23 times with respect to the GPU implementation. The 

validity of the technique is shown in a surface-mounted device detection application. 

Accelerators are commonplace in today’s HPC environment. Still, providing a 

common programming language to efficiently use architecturally different accelerators 

such as FPGAs and GPUs is quite a challenge. In “Workload Distribution and 



Balancing in FPGAs and CPUs with OpenCL and TBB” [10] different accelerator 

topologies are used to compute the components of a sliding window object detection 

algorithm (filter, histogram, classifier). Interestingly, all accelerators are programmed 

with the same OpenCL source code. In the application test case, the accelerators show 

comparable performance, but the FPGAs have substantially lower power consumption. 

The results of this experiment demonstrate that one standard parallel programming 

language may be able to close the semantic gap between accelerators, hindering 

unbridled use of heterogeneous computing. 

The time to load FPGA designs remains expensive. This can be alleviated by 

partial reconfiguration, which allows sharing computing resources between related 

tasks. Still a framework is needed to operate dynamic task switching from the 

connected CPU. The paper “A Run-Time System for Partially Reconfigurable FPGAs: 

The case of STMicroelectronics SPEAr board”[11] describes the experience gained 

with a development board connecting a Virtex-5 FPGA accelerator daughter board and 

an ARM Cortex A9 dual-core processor. A run-time system manager is presented 

which schedules software and hardware tasks, including dynamic reconfiguration of the 

FPGA. The benefits and possible improvements of the architecture are explored with a 

hardware Ray Tracer application running on the accelerator in parallel with a software 

edge detection application running on the processor. 

In contrast with accelerators having a fixed architecture, the performance of an 

FPGA largely depends on the way the hardware is used. This entails exploring the 

reconfigurable design landscape to maximize the performance and minimize the 

resource usage. In the paper “Exploring Automatically Generated Platforms in High 

Performance FPGAs” [12] a number of heuristics are presented to guide the selection 

of memories, bus structures and interfaces. These guidelines are then applied to an 

image processing and a Monte Carlo simulation application. Experimental results show 

that employing these rules allows to systematically improve the design. 
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