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Abstract. High-performance computing with FPGAs is gaining momentumwith
the advent of sophisticated High-Level Synthesis (HLS) tools. The performance of
a design is impacted by the input-output bandwidth, the codeoptimizations and
the resource consumption, making the performance estimation a challenge. This
paper proposes a performance model which extends the roofline model to take into
account the resource consumption and the parameters used inthe HLS tools. A
strategy is developed which maximizes the performance and the resource utilization
within the area of the FPGA. The model is used to optimize the design exploration
of a class of window-based image processing application.
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Introduction

Field Programmable Gate Arrays (FPGAs), organized as a programmable and massively
parallel architecture, offer a great performance potential. However, the design effort of
FPGAs requires a detailed knowledge of hardware and a significant time consumption.
New High-Level Synthesis (HLS) environments continue to improve the creation and the
optimization of a design. The HLS tools reduce the development time and automate the
compilation and synthesis flow from high-level languages, such as C/C++ or SystemC, to
register transfer level languages as VHDL or Verilog. The compilers are able to generate
parallel implementations of loops, containing large number of operations with limited
data dependencies. Also, the incorporation of concurrencyinto a design avoids the man-
ual creation of the RTL implementation. Furthermore, much of the debugging and verifi-
cation can be performed at a high level rather than at the RTL code level. Consequently,
a faster design is possible thanks to the reduction of the debugging and verification time.

The design space exploration (DSE), selecting which code optimizations to apply
when implementing an algorithm, is a non-trivial task. Several parameters such as re-
source consumption and performance must be balanced. The performance of the FPGA
is modeled by extending the roofline model proposed by William, Watermans and Pat-
terson [1], with aspects related to resource consumption and code optimzations such as
pipelining, loop unrolling and parallelization. The current HLS tools are able to provide
good estimations of the performance and the resource consumption of a particular algo-
rithm. Taking into account the resources available on the FPGA, a design may be repli-
cated a number of times. The idea is to maximize the global performance, i.e. the product
of an optimized design times the number of identical designsfitting into the FPGA area.
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On one hand, the optimizations available on the HLS tools allow to obtain a complete
range of performance for one algorithm. On the other hand, knowing the resource con-
sumption of each design and the available resources of the target FPGA, allows to esti-
mate the replication level. Combining the HLS estimation ofperformance and resource
utilization, the performance model allows to optimize the global performance.

This paper is organized as follows. Section 1 presents related work. The performance
model for FPGAs is described in Section 2. The elaboration ofthe proposed model is
detailed in Section 3. In Section 4 the performance model is applied to window-based
image processing. Conclusions are drawn in Section 5.

1. Related Work

Analytic models have been proposed recently for multicore processors. The roofline
model [1] proposed in 2008, is a visual performance model that makes the identification
of potential bottlenecks easier and provides a guideline toexplore the architecture. It has
been proved to be flexible enough to characterize not only multicore architectures but
also innovative architectures ([2], [3], and [4]). In the GPU community the model has
been well accepted([5], [6] and [7]), due to the similarity of GPU architectures and mul-
ticore processors. Nevertheless, as modeling FPGAs demands a considerable number of
parameters, the model has been considered for FPGAs just in afew cases [8], [9]. On the
other hand, FPGA performance models have been already proposed in the past, [10] and
specially [11], but the HLS tools were not mature enough at that time to be included in
the model.

2. Performance Modeling

The basis of the roofline model can be adapted and extended forFPGAs. The original
model expresses the maximum performance of an application running on an architecture
as a function of the Computational Performance (CP) of the architecture and its memory
Bandwidth (BW). TheCPrepresents the computational power and is originally measured
in GFLOPs. The connection betweenCPandBW is the so called Computational Intensity
(CI), which equals the number of operations executed per byte accessed in the memory.
The model assumes either theCPor the memoryBW are the limiting factors. Therefore,
the maximal attainable performance of an application running on some platform is given
by the following equation:

Attainable Per f ormance= min(CP, CI ×BW) (1)

Figure 1 depicts several performance rooflines, which are defined by the hardware spec-
ification or obtained through benchmarking. Furthermore, there are other boundaries,
called ’ceilings’, that can only be overcome if the application exploits the available re-
sources in an efficient way.

The roofline model is obtained from the main features of a multicore architecture.
Because FPGAs are a fully programmable technology whereas the architecture of tra-
ditional processors is fixed, the reconfigurable architecture doesn’t allow an immediate
use of the roofline model. In fact, as the target algorithm defines the architecture, the
extended model must be constructed for each algorithm. However, the main principles
of the roofline model can be adopted, identifying the performance boundary or what
optimizations offer highest performance.
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Figure 1. Basis of the Roofline Model. Example of how two applications with a different CI, are
either compute or I/O bound

2.1. Extending the Roofline Model for FPGAs

The flexibility of the original model allows to adapt the maincharacteristics for FPGAs.
Some, as the operation units or the I/OBW, have been already adapted to describe other
architectures, but others must be completely adapted or even extended.

Operations:Floating point operations have been widely used in order to show the
computational power of microprocessors, but have a prohibitive cost on FPGAs. These
operations are often avoided by FPGA designers, adopting other numeric representations
as fixed point operations.

I/O Bandwidths:The original roofline model just considers the external memory as
memory boundary. Consecutive reviews have increased the range of memory boundaries,
by including off-chip memory, L2 Cache, PCIe bandwidth, Network bandwidth,... This
wide range of memoryBW, will be considered as I/OBW, can be present at the same
time in any architecture, especially in FPGAs.

Roofs and ceilings:Without a fixed architecture, the computational roof is not so ev-
ident. A basic operation as one addition can be done using LUTs, FFs or DSPs, masking
any performance estimation based on the resource consumption. Additionally, FPGAs
may incorporate multiple I/O interfaces, which is defined asmultiple I/O ceilings in the
model, depending on the algorithm and its implementation.

Scalability:The level of parallelism of an algorithm is defined by the number of op-
erations that can be computed in parallel. On FPGAs, a Processing Element (PE) is com-
posed by the operations of the algorithm. The resource consumption of onePE defines
the maximum number ofPEs that fits on an FPGA. This value is called scalability (SC)
and defined as (2). Each replicatedPE can process input data from independent sources
or a set of data from the same source. On the other hand, besides theSCis an optimistic
value because it does not consider the glue logic between PEs, the impact of these logic
resources is introduced into the model thanks to placement and routing.

SC =

⌊

Available Resources
Resource Consumption per PE

⌋

(2)

Resource Consumption:The flexibility of the FPGAs follows from the fact that
they are fully programmable. All the non-dedicated hardware components can be pro-
grammed to execute a specific operation. Therefore, the maximumCP is determined by
the resource consumption of thePEs and not by the fixed internal architecture as in other
platforms.



2.2. Description of the Extended Model

The original roofline model defines three principal parameters [12] involved on the per-
formance: Computation, Communication and Locality. Threeother parameters are di-
rectly involved in the extended model: resource consumption, latency and scalability.
One by one, the original parameters integrate the new parameters in order to create a
more appropriate model for FPGAs.

Thecomputation, through theCI, reflects the complexity of an algorithm. As was
mentioned, the floating point operations are not a good unit for FPGAs, and some kinds
of integer operation should be the proper unit. For that reason, byte-operations [Bops],
defining the number of operations per byte, is a good candidate. The byte-operations are
general enough to cover different kind of integer operations (as fixed-point) and detailed
enough to represent the complexity of the algorithms in function of the number of op-
erations per byte. In the extended model, the computationalroofline is defined by the
properties of the algorithm, such as the level of replication of the algorithm (SC) and the
attainable throughput of eachPE. In fact, the maximum number ofPEs of a particular
algorithm, fitting on the available resources of the FPGA, and the attainable performance
per PE (CPPE) define the attainable performance. Therefore, theCP in (1) is replaced by
CPFPGA, where the performance comes from the performance units of thePEs and not
from the floating-point operations as in the original model.

CPFPGA=CPPE×SC (3)

Which, applied to (1) becomes:

Attainable Per f ormance= min(CPPE×SC, CI×BW) (4)

Therefore, the model includes the impact of the resource consumption on the per-
formance, through theSCand the attainable performance of onePE. Furthermore, an in-
crement of the resource consumption leads to a lower operational frequency, decreasing
the performance of eachPE.

Thecommunicationon the FPGAs can occur in many different ways. The roofline
model of an FPGA only includes the available I/OBW, which can be represented as
different I/O ceilings. Thus, as each communication methodhas a differentBW, the
model can identify the limiting interface and can show an estimation of the I/O bandwidth
using different alternatives. I.e., if the communication with the FPGA is done through the
network bus, the attainable performance would increase by using the PCIe bus instead.

The importance of thelocality resides on the high cost of the communication. In
fact, maximizing the locality makes it possible to minimizethe communication. In the
original roofline model, the locality is possible by the use of cache memory. On FPGAs,
however, it can be translated in the use of blocks of memory (BRAMs). BRAMs are
an internal dedicated resource of the FPGAs, which offers high BW. Thus, by using
internal memory for data reuse, theCI increases because more operations can be done
per external memory access. Also, a higherCI means higher available external memory
BW(by shifting to the right in the roofline model). The loop unrolling in FPGAs is an
example of how the internal memory increases theCI. The reuse of the input data in some
algorithms by unrolling loops, reduces the external memoryaccesses and increments the
CI. Finally, the BRAMs must be considered as any other resourceon FPGAs, and thus,
can be a limiting factor for the final performance as any otherlogic resource.
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Figure 2. Impact of loop unrolling over the CI, the SC and the Performance. Generated from the
content of Table 1, what is the most beneficial loop unrollinglevel?

3. Introducing the High-Level Synthesis tools to constructthe model

On FPGAs, only the available logic resources and the I/OBW are known in advance. In
contrast to the original model, the new model can only be elaborated for an algorithm,
and even, for different designs of the same algorithm, because the implementation of
the algorithm defines the resource consumption and the attainable performance. In the
past, to elaborate an analytical performance model would require a large amount of effort
rewriting the HDL algorithm description. However, thanks to the HLS tools, this task
can be done much faster and easier nowadays since most of the tools offer different
kinds of optimizations. Based on the Table 1, Figure 2 depicts the impact of the partial
loop unrolling over several parameters, showing how challenging the selection between
all the available optimizations can be. By increasing theCI applying loop unrolling,
the increment on the resource consumption reduces the number of fittablePEs as well.
However, there are a direct relation between the resource consumption and the offered
performance perPE. Therefore, the question is what is the right level of loop unrolling
in order to obtain the highest performance. The proposed model offers not only a visual
performance estimation but also a guideline to reach the maximum performance through
the available optimizations.
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Figure 3. Impact of the increment of the CI in the extended model. The increment of the CI, thanks
to the HLS optimizations for example, increases the performance of one PE as well.
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Figure 4. Impact of the SC on the maximum performance. The attainable performance is limited
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evident when the SC is also considered.



Resource
Consumption

No
Unrolling

Unrolling
x2

Unrolling
x4

Unrolling
x8

Unrolling
x16

Unrolling
x32

Slice Registers(301440) 3652 6145 11132 21109 40573 79979
Slice LUTs (150720) 3157 4281 6335 10814 20189 37634
LUT-FF Pairs (37680) 1069 1435 2245 3805 7193 13068
BRAM/FIFO (416) 1 2 3 4 8 15
DSP48 (768) 18 24 36 60 108 204

Max.
number of PEs

35 26 16 9 5 2

Computational
Intensity (CI)

1.9768 2.624 3.144 3.496 3.704 3.816

Throughput
per PE [GBops/s]

0.636 1.191 2.132 2.711 3.192 3.482

Computational
Performance (CPFPGA)
[GBops/s]

22.24 30.96 34.08 24.4 15.92 6.96

x8 PCIe BW [GBops/s] 8.302 11.027 13.190 14.678 15.554 16.0272

Resultant Roofline 8.302 11.027 13.190 14.678 15.554 6.96

Table 1. Generation of the extended model based on the resource consumption, the computational
performance of one PE and the I/O limited performance. The resultant roofline is obtained apply-
ing the Eqs. (2) and (4) for only one FPGA.

The introduction of the HLS tools into the model elaborationis done through the
DSE of an algorithm. Most of the HLS tools offer valuable information (resource con-
sumption, latency, throughput, ...) required to obtain theextended performance model.
Figures 3 and 4 show how to construct the proposed model for anhypothetical algorithm.
Figure 3 depicts how theCI increases by using HLS optimizations or by using internal
memory to reuse data. ThePEs with higherCI offer better performance, but their re-
source consumption demands increase as well. The inclusionof the resource consump-
tion into the performance model is done in Figure 4, showing how to obtain the compu-
tational roofline. One way to obtain the roofline is to consecutively increment theCI by
applying loop unrolling for example. For eachCI, the implementation of the target algo-
rithm offers a specific performance and a resource consumption. On one hand, the perfor-
mance is obtained from the latency of thePE and the maximum operational frequency.
On the other hand, considering the available resources of the FPGA, the parallelism of
the algorithm is exploited by replicating the design as on the GPU approach. This can
be done replicating some internal operations of the algorithm, demanding an inherent
parallelism, or the replication of the whole algorithm considered as aPE. In both cases
the model can be applied. Therefore, applying Eq. (3), theSCof the design together with
the performance of eachPE, define the value of the maximum attainable performance of
the algorithm at each specificCI point. In this way, it is possible to obtain the maximum
performance for eachCI point reachable by the algorithm. It is interesting to notice that
the attainable performance of onePE increases with theCI till some point, where the
resource consumption starts to be the limiting factor. Therefore, higherCI does not need
to be necessarily imply higher attainable performance.

4. Experimental Results

The proposed model is applied to an image processing algorithm together with Riverside
Optimizing Compiler for Configurable Computing (ROCCC) [13]. The algorithm is im-
plemented in a streaming fashion in a platform composed of two FPGAs Virtex6-LX240
on a Pico Computing backplane board EX500. The backplane hasa 16 lane PCIe bus and



accommodates 2 FPGAs, each with an 8 lane PCIe interface. Themeasured streaming
bidirectionalBW is 4.2GB/s and 5.5 GB/s respectively. Therefore, while theCPFPGA is
obtained from the available resources of one FPGA, the available stream PCIeBW would
be I/O bound.

The implemented algorithm is a morphological operation called dilation. It is a ba-
sic example of a computation that uses a moving window over a two-dimensional data
structure. Given an input image and a rectangular mask that contains ones and zeros, the
output image is determined by placing the mask over the corresponding input pixel and
determining the maximum value of the pixels which correspond to the positions of the
mask containing ones. Dilation may be categorized as a neighborhood to pixel algorithm.
To simplify matters, we consider a square mask of size 3 by 3, containing only ones and
the input images are in grayscale. Therefore, it is not necessary to read the mask values.
As eight comparisons must be done to generate each output pixel, and nine input pixels
need to be read, the initialCI of this algorithm equals to8

10.
ROCCC offers a type of internal memory, calledsmart buffers, that avoids repeated

memory accesses by reusing data [14]. This inherent optimization, which is always ac-
tive, recognizes memory accesses patterns. For a square mask of 3 by 3 elements, 9 pix-
els fetch the smart buffers in order to compute the pixel of the first column. For the rest
of the columns, only 3 memory accesses are required thanks tothe reusing of the pre-
fetched pixels. This reuse of data increases theCI of the dilation operation. Therefore,
knowing how the smart buffers operate, it is possible to obtain the newCI. As the mask
is full of ones, theCI is defined as follows:

CI =
Byte Operations

(

No f Memory Accesses
No f Bytes o f the Image

) (5)

CIROCCC=
8

(

H×(k2+1)+H×(W−1)×(k+1)
H×W

) =
8×W

(k2+1)+ (W−1) · (k+1)
(6)

HereH andW are the height and the width of the image respectively. Sincewe
are assuming a square mask,k represents both dimensions of the dilation kernel, but
the formula can be adjusted for non-squared kernels. The first term of the denominator
reflects the pre-fetching of the smart buffers while the other adder shows the additional
fetches in the remaining steps.

In addition to the smart buffers, ROCCC offers other optimizations, such as loop
unrolling, which is able to increase theCI by reducing the memory accesses. Extending
the Eq. (6), a generalized version considering the partial loop unrolling impact over the
CI can be obtained:

CIPLU =
8×NPLU ×W

((NPLU + k−1)× k+NPLU)+ (W−1)× ((NPLU + k−1)+NPLU)
(7)

HereNPLU represents the level of loop unrolling. Figure 2(c) also shows how the
memory accesses are reduced and theCI is increased. I.e., by unrolling the loop 2 times
theCI increases up to 2.56, and if the unroll is unrolled further, theCI approaches 4.

Table 1 summarizes the elaboration of the proposed model. The VHDL code gener-
ated by ROCCC is synthesized using the Xilinx ISE 14.4 designsoftware to obtain the
resource consumption. Once the resource consumption is obtained for each design, the
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Figure 5. Superimposed performance models of one FPGA (dashed lines)and two FPGAs (con-
tinuous lines) of dilation using ROCCC.

most limiting resource is identified and the maximum number of PEs which can fit on the
FPGA is estimated. TheCI is obtained from the number of memory accesses and know-
ing that each output pixel requires 8 Bops. Finally, the reachable throughput of eachPE
is obtained from the total latency operating in pipeline. Therefore, with both parameters,
it is possible to derive the maximum attainableCPFPGA. The minimum of theCPFPGA

and the I/OBW limited performance for eachCI defines the performance model.
Figure 5 shows the roofline obtained from the measurements. Instead of removing all

the computational boundaries above the I/O bound, we preferto keep it in order to clarify
the proposed model. As is depicted, theCI increases not only due tosmart buffersbut
also with the loop unrolling optimization. The vertical lines depicted on 5 represent the
obtainedCI due to both optimizations. This increment is beneficial since more I/OBW,
which is the limiting factor, can be achieved. However, by further unrolling the loop, the
latency of the operations as well as the resource consumption increase due to the internal
memory consumption. In fact, after unrolling 16 times the resource consumption of each
PE is so high that the attainable performance drops below the I/O limited performance.

5. Conclusions

In this paper we have proposed a performance model which extends the roofline model
for FPGAs. By analysing the main characteristics of the roofline model we missed the
connection between theCPFPGA and the resource consumption, one of the most important
parameters on FPGAs. As solution, the proposed model uses the HLS tools to combine
the basis of the roofline model with the main characteristicsof FPGAs. Finally, we have
applied the model to a window-based image processing algorithm using ROCCC. Our
next steps are the automatization of the construction of themodel and the exploration of
the model with more complex algorithms.
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