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Abstract. High-performance computing with FPGAs is gaining momentuitin
the advent of sophisticated High-Level Synthesis (HLS)stobhe performance of
a design is impacted by the input-output bandwidth, the amutémizations and
the resource consumption, making the performance estimatichallenge. This
paper proposes a performance model which extends the mafiidel to take into
account the resource consumption and the parameters ugled HLS tools. A
strategy is developed which maximizes the performancelancesource utilization
within the area of the FPGA. The model is used to optimize twgh exploration
of a class of window-based image processing application.
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Introduction

Field Programmable Gate Arrays (FPGASs), organized as a@numable and massively
parallel architecture, offer a great performance potéertiawever, the design effort of
FPGAs requires a detailed knowledge of hardware and a signiftime consumption.
New High-Level Synthesis (HLS) environments continue tpiiave the creation and the
optimization of a design. The HLS tools reduce the develagrime and automate the
compilation and synthesis flow from high-level languagashsas C/C++ or SystemC, to
register transfer level languages as VHDL or Verilog. Thepiers are able to generate
parallel implementations of loops, containing large numdfeoperations with limited
data dependencies. Also, the incorporation of concurranoya design avoids the man-
ual creation of the RTL implementation. Furthermore, muictne debugging and verifi-
cation can be performed at a high level rather than at the Rtle ¢evel. Consequently,
a faster design is possible thanks to the reduction of thegtghg and verification time.
The design space exploration (DSE), selecting which codienggations to apply
when implementing an algorithm, is a non-trivial task. Sal/@arameters such as re-
source consumption and performance must be balanced. Tlogrpance of the FPGA
is modeled by extending the roofline model proposed by Wiili&/atermans and Pat-
terson [1], with aspects related to resource consumptidrcade optimzations such as
pipelining, loop unrolling and parallelization. The cuntélLS tools are able to provide
good estimations of the performance and the resource cqigamof a particular algo-
rithm. Taking into account the resources available on thé &PRa design may be repli-
cated a number of times. The idea is to maximize the glob&paance, i.e. the product
of an optimized design times the number of identical desiigirsg into the FPGA area.
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On one hand, the optimizations available on the HLS tootsnatb obtain a complete

range of performance for one algorithm. On the other handwkmg the resource con-

sumption of each design and the available resources of thettBPGA, allows to esti-

mate the replication level. Combining the HLS estimatiompeiformance and resource
utilization, the performance model allows to optimize thabgl performance.

This paper is organized as follows. Section 1 presentsatlabrk. The performance
model for FPGAs is described in Section 2. The elaboratiothefproposed model is
detailed in Section 3. In Section 4 the performance modepjdied to window-based
image processing. Conclusions are drawn in Section 5.

1. Related Work

Analytic models have been proposed recently for multicoegssors. The roofline
model [1] proposed in 2008, is a visual performance modelirtiakes the identification

of potential bottlenecks easier and provides a guidelirexpdore the architecture. It has
been proved to be flexible enough to characterize not onlficoué architectures but
also innovative architectures ([2], [3], and [4]). In the GBommunity the model has
been well accepted([5], [6] and [7]), due to the similarifyGPU architectures and mul-
ticore processors. Nevertheless, as modeling FPGAs dengatmhsiderable number of
parameters, the model has been considered for FPGAs jutweases [8], [9]. On the

other hand, FPGA performance models have been alreadygedpothe past, [10] and
specially [11], but the HLS tools were not mature enough at time to be included in

the model.

2. Performance Modeling

The basis of the roofline model can be adapted and extendédPfdAs. The original
model expresses the maximum performance of an applicatiorimg on an architecture
as a function of the Computational Performan€B) of the architecture and its memory
Bandwidth BW). TheCPrepresents the computational power and is originally meaisu
in GFLOPs. The connection betwe@R andBW is the so called Computational Intensity
(CI), which equals the number of operations executed per bytsaed in the memory.
The model assumes either 6@ or the memorBW are the limiting factors. Therefore,
the maximal attainable performance of an application nuigien some platform is given
by the following equation:

Attainable Performance= min(CP, Cl x BW) 1)

Figure 1 depicts several performance rooflines, which dfieettby the hardware spec-
ification or obtained through benchmarking. Furthermdnere are other boundaries,
called 'ceilings’, that can only be overcome if the applicatexploits the available re-
sources in an efficient way.

The roofline model is obtained from the main features of a icwi architecture.
Because FPGAs are a fully programmable technology wheheaarthitecture of tra-
ditional processors is fixed, the reconfigurable architectioesn’t allow an immediate
use of the roofline model. In fact, as the target algorithmnésfithe architecture, the
extended model must be constructed for each algorithm. Mexwéhe main principles
of the roofline model can be adopted, identifying the perémoe boundary or what
optimizations offer highest performance.
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Figure 1. Basis of the Roofline Model. Example of how two applicatioitls avdifferent Cl, are
either compute or I/0O bound

2.1. Extending the Roofline Model for FPGAs

The flexibility of the original model allows to adapt the maimaracteristics for FPGAs.
Some, as the operation units or the B®@/, have been already adapted to describe other
architectures, but others must be completely adapted orextended.

Operations:Floating point operations have been widely used in ordehtwsthe
computational power of microprocessors, but have a priwébcost on FPGAs. These
operations are often avoided by FPGA designers, adoptirey aumeric representations
as fixed point operations.

I/0 Bandwidths:The original roofline model just considers the external mgnas
memory boundary. Consecutive reviews have increasedtige f memory boundaries,
by including off-chip memory, L2 Cache, PCle bandwidth, Watk bandwidth,... This
wide range of memorBW, will be considered as I/@W, can be present at the same
time in any architecture, especially in FPGAs.

Roofs and ceilingsaVithout a fixed architecture, the computational roof is rooeg-
ident. A basic operation as one addition can be done usingsl.BFs or DSPs, masking
any performance estimation based on the resource consumpiiditionally, FPGAs
may incorporate multiple 1/O interfaces, which is definedrastiple I/O ceilings in the
model, depending on the algorithm and its implementation.

Scalability: The level of parallelism of an algorithm is defined by the nemdif op-
erations that can be computed in parallel. On FPGAs, a PsoaeElementRE) is com-
posed by the operations of the algorithm. The resource coptan of onePE defines
the maximum number d?Es that fits on an FPGA. This value is called scalabil®)
and defined as (2). Each replicafeH can process input data from independent sources
or a set of data from the same source. On the other hand, bakE®Cis an optimistic
value because it does not consider the glue logic betweentREsnpact of these logic
resources is introduced into the model thanks to placenmehtauting.

)

SC— { Available Resources ElE

Resource Consumption per

Resource Consumptiorlhe flexibility of the FPGAs follows from the fact that
they are fully programmable. All the non-dedicated haraéw@mponents can be pro-
grammed to execute a specific operation. Therefore, thermemiCP is determined by
the resource consumption of tR&s and not by the fixed internal architecture as in other
platforms.



2.2. Description of the Extended Model

The original roofline model defines three principal paramsefte?] involved on the per-
formance: Computation, Communication and Locality. Thot#teer parameters are di-
rectly involved in the extended model: resource consumpiimency and scalability.
One by one, the original parameters integrate the new paeasni@ order to create a
more appropriate model for FPGAs.

The computationthrough theCl, reflects the complexity of an algorithm. As was
mentioned, the floating point operations are not a good onfEPGAS, and some kinds
of integer operation should be the proper unit. For thatoeakyte-operations [Bops],
defining the number of operations per byte, is a good carglid&ie byte-operations are
general enough to cover different kind of integer operati@s fixed-point) and detailed
enough to represent the complexity of the algorithms in fiemcof the number of op-
erations per byte. In the extended model, the computatimdline is defined by the
properties of the algorithm, such as the level of replicatibthe algorithm $C and the
attainable throughput of ead?E. In fact, the maximum number &fEs of a particular
algorithm, fitting on the available resources of the FPGAl thre attainable performance
per PE CRbp) define the attainable performance. Therefore(Rén (1) is replaced by
CR:pca Where the performance comes from the performance unitsed®Es and not
from the floating-point operations as in the original model.

CR:pca=CPe x SC (3
Which, applied to (1) becomes:

Attainable Performance= min(CRe x SC Cl x BW) (4)

Therefore, the model includes the impact of the resourcewoption on the per-
formance, through th8Cand the attainable performance of d?e. Furthermore, an in-
crement of the resource consumption leads to a lower opegdtirequency, decreasing
the performance of eadPE.

The communicatioron the FPGAs can occur in many different ways. The roofline
model of an FPGA only includes the available IBYV, which can be represented as
different I/O ceilings. Thus, as each communication methad a differenBW, the
model can identify the limiting interface and can show amestion of the 1/0 bandwidth
using different alternatives. l.e., if the communicatiativthe FPGA is done through the
network bus, the attainable performance would increasesimguhe PCle bus instead.

The importance of théocality resides on the high cost of the communication. In
fact, maximizing the locality makes it possible to minimibe communication. In the
original roofline model, the locality is possible by the useache memory. On FPGAs,
however, it can be translated in the use of blocks of memoRBA®s). BRAMs are
an internal dedicated resource of the FPGAs, which offegh BW. Thus, by using
internal memory for data reuse, tlid increases because more operations can be done
per external memory access. Also, a higiémeans higher available external memory
BW(by shifting to the right in the roofline model). The loop ulirg in FPGASs is an
example of how the internal memory increases@herhe reuse of the input data in some
algorithms by unrolling loops, reduces the external menaggesses and increments the
ClI. Finally, the BRAMs must be considered as any other rescamdePGAs, and thus,
can be a limiting factor for the final performance as any olbgic resource.
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Figure 2. Impact of loop unrolling over the ClI, the SC and the PerforcearGenerated from the
content of Table 1, what is the most beneficial loop unrollevg!?

3. Introducing the High-Level Synthesis tools to constructhe model

On FPGAs, only the available logic resources and theB¥®are known in advance. In
contrast to the original model, the new model can only beaktied for an algorithm,
and even, for different designs of the same algorithm, bezdlbe implementation of
the algorithm defines the resource consumption and thenakis performance. In the
past, to elaborate an analytical performance model wougldire a large amount of effort
rewriting the HDL algorithm description. However, thanksthe HLS tools, this task
can be done much faster and easier nowadays since most ajdlseoffer different
kinds of optimizations. Based on the Table 1, Figure 2 dephe impact of the partial
loop unrolling over several parameters, showing how chgllgg the selection between
all the available optimizations can be. By increasing @eapplying loop unrolling,
the increment on the resource consumption reduces the mwohbiable PEs as well.
However, there are a direct relation between the resounesucoption and the offered
performance pePE. Therefore, the question is what is the right level of loopalimg
in order to obtain the highest performance. The proposecehaifirs not only a visual
performance estimation but also a guideline to reach thémrmar performance through
the available optimizations.
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Figure 3. Impact of the increment of the ClI in the extended model. Teérenment of the ClI, thanks
to the HLS optimizations for example, increases the pedara of one PE as well.
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Figure 4. Impact of the SC on the maximum performance. The attainasfermance is limited
by the 1/0 bandwidth as well as the SC of the design. Theretfoeebenefit of a high Cl is not so
evident when the SC is also considered.



Resource No Unrolling | Unrolling | Unrolling | Unrolling | Unrolling
Consumption Unrolling X2 x4 X8 x16 x32
Slice Registers(301440) 3652 6145 11132 21109 40573 79979
Slice LUTs (150720) 3157 4281 6335 10814 20189 37634
LUT-FF Pairs (37680) 1069 1435 2245 3805 7193 13068
BRAM/FIFO (416) 1 2 3 4 8 15
DSP48 (768) 18 24 36 60 108 204
Max.

35 26 16 9 5 2
number of PEs
Computational 1.9768 2.624 3.144 3.496 3.704 3.816
Intensity (ClI)
Throughput
per PE [GBops/s] 0.636 1.191 2.132 2711 3.192 3.482
Computational
Performance  CR:pga) 22.24 30.96 34.08 24.4 15.92 6.96
[GBops/s]
x8 PCle BW [GBops/s] 8.302 11.027 13.190 14.678 15.554 16.0272
Resultant Roofline [ 8302 [ 11.027 | 13190 | 14678 | 15554 |  6.96

Table 1. Generation of the extended model based on the resource roptism, the computational
performance of one PE and the I/O limited performance. Thaltant roofline is obtained apply-
ing the Egs. (2) and (4) for only one FPGA.

The introduction of the HLS tools into the model elaboratierdone through the
DSE of an algorithm. Most of the HLS tools offer valuable infation (resource con-
sumption, latency, throughput, ...) required to obtainektended performance model.
Figures 3 and 4 show how to construct the proposed model foypothetical algorithm.
Figure 3 depicts how th€l increases by using HLS optimizations or by using internal
memory to reuse data. THeEs with higherCl offer better performance, but their re-
source consumption demands increase as well. The incloéithe resource consump-
tion into the performance model is done in Figure 4, showiog to obtain the compu-
tational roofline. One way to obtain the roofline is to consigely increment theCl by
applying loop unrolling for example. For eaCth, the implementation of the target algo-
rithm offers a specific performance and a resource consomgdin one hand, the perfor-
mance is obtained from the latency of tAE and the maximum operational frequency.
On the other hand, considering the available resourcesedffGA, the parallelism of
the algorithm is exploited by replicating the design as an@&PU approach. This can
be done replicating some internal operations of the algarjtdemanding an inherent
parallelism, or the replication of the whole algorithm ciolesed as #E. In both cases
the model can be applied. Therefore, applying Eq. (3)S@ef the design together with
the performance of eadPE, define the value of the maximum attainable performance of
the algorithm at each specifél point. In this way, it is possible to obtain the maximum
performance for eacil point reachable by the algorithm. It is interesting to neticat
the attainable performance of oR& increases with th€l till some point, where the
resource consumption starts to be the limiting factor. &feee, higheCl does not need
to be necessarily imply higher attainable performance.

4. Experimental Results

The proposed model is applied to an image processing aigotdgether with Riverside
Optimizing Compiler for Configurable Computing (ROCCC) [1Bhe algorithm is im-
plemented in a streaming fashion in a platform composed @RRGAs Virtex6-LX240
on a Pico Computing backplane board EX500. The backplana hé$ane PCle bus and



accommodates 2 FPGAs, each with an 8 lane PCle interfacem&asured streaming
bidirectionalBW is 4.2GB/s and 5.5 GB/s respectively. Therefore, whileQRepga is
obtained from the available resources of one FPGA, theahlaistream PCIBW would
be 1/0 bound.

The implemented algorithm is a morphological operatiotechtlilation. It is a ba-
sic example of a computation that uses a moving window ovemadimensional data
structure. Given an input image and a rectangular mask timahins ones and zeros, the
output image is determined by placing the mask over the spamding input pixel and
determining the maximum value of the pixels which corresptinthe positions of the
mask containing ones. Dilation may be categorized as a heitjlood to pixel algorithm.
To simplify matters, we consider a square mask of size 3 bp@taining only ones and
the input images are in grayscale. Therefore, it is not reeagdo read the mask values.
As eight comparisons must be done to generate each outpalf @nd nine input pixels
need to be read, the initi@ll of this algorithm equals tq%.

ROCCC offers a type of internal memory, callethart buffersthat avoids repeated
memory accesses by reusing data [14]. This inherent omiioiz, which is always ac-
tive, recognizes memory accesses patterns. For a squakeofriaby 3 elements, 9 pix-
els fetch the smart buffers in order to compute the pixel effitst column. For the rest
of the columns, only 3 memory accesses are required thartke tieusing of the pre-
fetched pixels. This reuse of data increasesGhef the dilation operation. Therefore,
knowing how the smart buffers operate, it is possible toiokitze newCl. As the mask
is full of ones, theCl is defined as follows:

Byte Operations

Cl= ®)
Nof Memory Accesse
(Nof Bytes of the Imagi
cl B 8 B 8xW (©)
Rocee™ (Hx<k2+1>+:x &v,vfnx(kﬂ)) TR+ 1)+ W-1)-(k+1)

HereH andW are the height and the width of the image respectively. Sinee
are assuming a square magkrepresents both dimensions of the dilation kernel, but
the formula can be adjusted for non-squared kernels. Thedms of the denominator
reflects the pre-fetching of the smart buffers while the o#ddler shows the additional
fetches in the remaining steps.

In addition to the smart buffers, ROCCC offers other optatians, such as loop
unrolling, which is able to increase tkd by reducing the memory accesses. Extending
the Eq. (6), a generalized version considering the pad unrolling impact over the
Cl can be obtained:

8 x NpLu x W

Npru +k—1) x k4 Nppy) + (W — 1) x ((NpLu +k—1) + NpLy)

Clpu = (( (7)

HereNpLy represents the level of loop unrolling. Figure 2(c) alsovshdow the
memory accesses are reduced andxhis increased. l.e., by unrolling the loop 2 times
theCl increases up to 2.56, and if the unroll is unrolled furtheeQl approaches 4.

Table 1 summarizes the elaboration of the proposed modelVHDL code gener-
ated by ROCCC is synthesized using the Xilinx ISE 14.4 desigtware to obtain the
resource consumption. Once the resource consumptionasnebltfor each design, the
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Figure 5. Superimposed performance models of one FPGA (dashed &nésjwo FPGAs (con-
tinuous lines) of dilation using ROCCC.

most limiting resource is identified and the maximum numiétes which can fit on the
FPGA is estimated. Th@l is obtained from the number of memory accesses and know-
ing that each output pixel requires 8 Bops. Finally, the hedte throughput of eadPE
is obtained from the total latency operating in pipelineefiéfore, with both parameters,
it is possible to derive the maximum attainallB-pga. The minimum of theCR-pga
and the I/OBW limited performance for eaddl defines the performance model.
Figure 5 shows the roofline obtained from the measuremestgdd of removing all
the computational boundaries above the 1/0 bound, we ptefezep it in order to clarify
the proposed model. As is depicted, tbeincreases not only due gmart buffersut
also with the loop unrolling optimization. The verticaldis depicted on 5 represent the
obtainedCl due to both optimizations. This increment is beneficial simore 1/OBW,
which is the limiting factor, can be achieved. However, bitifar unrolling the loop, the
latency of the operations as well as the resource consumiptioease due to the internal
memory consumption. In fact, after unrolling 16 times theotgce consumption of each
PE is so high that the attainable performance drops below @driited performance.

5. Conclusions

In this paper we have proposed a performance model whicim@ste roofline model

for FPGAs. By analysing the main characteristics of the noefinodel we missed the
connection between tl&R-pca and the resource consumption, one of the most important
parameters on FPGAs. As solution, the proposed model uedsliB tools to combine
the basis of the roofline model with the main characterigtfdSPGAs. Finally, we have
applied the model to a window-based image processing #dtgonising ROCCC. Our
next steps are the automatization of the construction ofrthéel and the exploration of
the model with more complex algorithms.
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