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ABSTRACT
The current Micro-Electro-Mechanical Systems (MEMS) technol-
ogy enables the deployment of relatively low-cost wireless sen-
sor networks composed of MEMS microphone arrays for accurate
sound-source localization. However, the evaluation and the selec-
tion of the most accurate and power-efficient network’s topology
is not trivial when considering dynamic MEMS microphone arrays.
Although software simulators are usually considered, they consist
of high-computational intensive tasks, which require hours to days
to be completed. In this paper, we present an FPGA-based platform
to emulate a network of microphone arrays. Our platform provides
a controlled simulated acoustic environment, able to evaluate the
impact of different network configurations such as the number of
microphones per array, the network’s topology or the used detec-
tion method. Data fusion techniques, combining the data collected
by each node, are used in this platform. The platform is designed
to exploit the FPGA’s partial reconfiguration feature to increase
the flexibility of the network emulator as well as to increase per-
formance thanks to the use of the PCI-express high-bandwidth
interface. On the one hand, the network emulator presents a higher
flexibility by partially reconfiguring the nodes’ architecture in run-
time. On the other hand, a set of strategies and heuristics to properly
use partial reconfiguration allows the acceleration of the emulation
by exploiting the execution parallelism. Several experiments are
presented to demonstrate some of the capabilities of our platform
and the benefits of using partial reconfiguration.

1 INTRODUCTION
Wireless sensor networks (WSN) composed of microphone arrays
are becoming popular [1], [2] thanks to the relatively low cost
of Micro-Electro-Mechanical Systems (MEMS) sensors. However,
validation and verification of these networks, using simulations,
are time consuming procedures. Furthermore, before the deploy-
ment of a WSN composed of microphone arrays, the network must
be tested in adapted environments such as anechoic chambers to
avoid undesired reflections, possible distortions or acoustic artifacts.
Simulators offer usually a solution since they quickly provide infor-
mation about the capabilities of a network. For instance, they can be
used to explore the effects of different node’s architectures, network
topologies or network synchronization strategies. However, simu-
lation processes are computationally intensive tasks which usually
require hours or days to complete. Due to the inherent parallelism
that microphone arrays present, we believe that FPGAs can accel-
erate the simulation of such type of networks. Here we present an
extended version of the microphone array network emulator (NE)

presented in [3], [4], which mimics the node’s response, combines
the response of the network’s nodes and provides an estimation of
the network’s response under a certain acoustic scenario. Therefore,
instead of a pure software-based NE like the one presented in [1],
the proposed NE uses an FPGA to accelerate the node’s compu-
tation by implementing exactly the same HDL code that is going
to be deployed in the nodes of a real network. From one side, an
improved version of the sound-source locator proposed in [5] and
accelerated in [6] is used as nodes of the network. From the other
side, the NE uses partial reconfiguration (PR) to adapt the network
topology and the node’s configuration to increase accuracy of the
sound source location. As a result, the functionalities of our NE are
distributed between the host and the FPGA, using a high-bandwidth
PCI-express (PCIe) interface for the communication and PR.

This paper extends the work and results presented in [3], [4].
On the one hand, this paper presents a more detailed description
of the NE platform, by providing low-level details of the node’s
architectures under evaluation and detailed use of PR through PCIe .
On the other hand, the use of PR through PCIe is exploited to not
only extend the capabilities of theNE but also used to accelerate the
emulation of multiple network’s topologies. The main contributions
of this work can be summarized as follows:

• A fully detailed architecture description of an FPGA-based
NE, providing low-level details of the platform and how the
PR via PCIe is used to reconfigure the network’s character-
istics.
• Strategies and heuristics to exploit the use of PR through
PCIe to further accelerate the computations on the FPGA.

This paper is organized as follows. The motivation of including
PR as part of our system is done in Section 2. Section 3 presents
relatedwork. The description of theNE architecture, the data fusion
technique and the PR is done in Section 4. How PR is used to
expand the supported nodes’ configurations of the NE and how to
accelerate executions of the emulator by using PR is described in
Section 5. In Section 6, the proposed NE is used to evaluate certain
network’s configurations. Finally, our conclusions are presented in
Section 7.

2 WHY PARTIAL RECONFIGURATION?
PR is a unique feature of FPGAs which allows us to change the
functionality of a part of the reconfigurable logic in runtime. This
results not only in a better reuse of area but also in a potential
increment of performance when properly applied. Streaming ap-
plications demanding multiple individual computations of similar



tasks but with different configurations are the ideal candidates. Fur-
thermore, the execution of streaming applications on FPGAs can
exploit parallelism by means of pipelining.

Reconfigurable resources are divided into static and dynamic
parts when applying PR. The resources for the communication
interfaces or for the PR control are usually in the static part. The
dynamic part supports PR at runtime to allocate different mutually
exclusive functionalities, known as reconfigurable modules (RM).
The reserved logic resources for the dynamic part are denoted as
reconfigurable partitions (RP ). Thus, each RP is dimensioned to
provide enough logic resources to support several RMs .

2.1 Beyond the Available Resources
PR allows a higher level of resource reuse because functionality
can be multiplexed in time on the reconfigurable logic. Such feature
allows the allocation of different tasks in the same RP . The only
condition is that their associated RMs must be multiplexed in time
by partially reconfiguring the RP .

The benefit of PR for an efficient resources’ management has
been exploited in different ways in recent years. For instance, the
architecture presented in [7] supports 80 distinct hardware archi-
tectures, with different levels and precisions, of DCT computations.
Other applications, instead, use PR to switch between applications’
modes in order to reduce the consumed FPGA resources and the
overall power consumption. An example is presented in [8], where
different image processing operations are switched in runtime
to more power-efficient modes. The runtime management of the
FPGA’s resources through PR allows self-adaptive or self-repairing
systems such as the one presented in [9]. Further examples of how
PR improves the resource utilization and increases the flexibility of
the system are detailed in [10].

2.2 Performance Opportunities
PR has area and time cost. On the one hand, additional area is
dedicated to support PR. On the other hand, the PR of a RP requires
a certain amount of time, which is directly related to the size of
the RP and the available BW to load the bitmap. Everything is
slightly different when considering PR over PCIe . PR is usually
exploited for small FPGAs or FPGA-based SoC . In such devices, the
logic resources are very limited, which evidences the benefit of PR
by multiplexing in time the available resources. An FPGA board
with PCIe is typically a high-end FPGA offering a large amount of
resources to support high-performance applications. Thus, the sizes
of theRPs are usually larger to exploit the available resources and/or
to allocate complex applications demanding many logic resources.
As a consequence, the corresponding bitmaps of the RMs are bigger,
consuming more external on-board memory. Fortunately, since PR
over PCIe is supported, the bitmap files can be located on the host
side and be loaded through PCIe . The use of a high-bandwidth
interface such as PCIe not only allows the reduction of the PR’s
area overhead but also provides new opportunities to the use of
FPGAs as hardware accelerators. However, a proper placement and
scheduling of the tasks to be executed on the FPGA is mandatory
to compensate the remaining time overhead.

vs Algo AlgoAlgo

inputs inputs

outputsoutputs

RP RP

Figure 1: The use or PR allows us to exploit the available resources
for different algorithm’s configurations. For instance, when not all
the input data need to be processed (dash arrows) the RP can be re-
configured to allocate more instances of the algorithm, doubling the
throughput in this example.

2.3 Our approach
PR offers several benefits in the context of a microphone array net-
work emulator. As mentioned above, the reuse of the logic resources
increases the flexibility of the NE by modifying the functionalities
in runtime. For instance, PR allows the evaluation of different node’s
architectures in runtime as has been shown in [3], [4]. Thanks to
PR, the area reuse not only increases the system’s flexibility but can
be also used to increase performance when exploiting the level of
parallelism of the tasks of the NE accelerated on the FPGA. Figure 1
depicts the main idea, where a RP is configured to support a scalable
algorithm, which processes several inputs in parallel (e.g. a convo-
lutional filter with several kernel sizes). The performance doubles
thanks to partially reconfiguring the RP to support two instances
of the algorithm while consuming the same area. Of course, the
overall performance by using PR through PCIe only increases if the
time overhead is reduced. As extension of the platform presented
in [3], we propose several heuristics to properly place and schedule
the nodes’ configurations. The overall result is a flexible platform
optimized to achieve the highest area and performance efficiency.

3 RELATEDWORK
In this section, we provide an overview of similar previous work,
and explain the relations and differences compared to our work.

FPGAs have been already used as emulators for WSN. The au-
thors in [11] propose an FPGA-based WSN emulator for the design,
simulation and evaluation of WSNs. Similarly, the authors in [12]
present an FPGA-based wide-band wireless channel emulator able
to generate white Gaussian noise, multi-path and Doppler fading
effects. Both works are complementary to ours as we focus on a
detailed emulation of a network node while simplifying the wire-
less communication aspect. Furthermore, the PR of our emulator
provides a higher dynamism and flexibility, which is not exploited
in the mentioned emulators.

The use of PR has been thoroughly explored and proposed dur-
ing the last decades. From one side, the use of PR to change the
configuration of a node in a network has been already considered.
For example, a LUT-based PR is proposed in [13] as part of an adap-
tive beamformer and in [5] to obtain a dynamic angular resolution
of their acoustic beamforming. Our NE, however, considers the
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Figure 2: Distribution of the NE’s components. The PR of the nodes and the data communication between the host and the FPGA are done via
PCIe. A middleware abstracts the application from the heuristics for the merging and scheduling of the nodes’ configurations, the host-FPGA
communication and the PR control. The dark blue boxes represent the components involved in the PR.

complete reconfiguration of the node and not only a minor com-
ponent. Thanks to this additional flexibility different architectures
can be evaluated on the nodes.

From the other side, the use of PR induces certain area and time
overhead. Specially critical is the time overhead, which must be
overcome in order to achieve high performance. Several authors
have proposed strategies to mitigate the impact of this overhead.
The approach proposed in [14] minimizes the total reconfigura-
tion time when distributing the tasks onto the target architecture,
through a proper placement and scheduling. Despite the authors
exploiting task’s similarities, they do not use such characteristic to
further exploit the RP resources. The optimal placement and sched-
uling is an NP-problem which is usually solved as an Integer-Linear
Programming (ILP ) problem. Thus, the authors in [15] present their
ILP model together with an heuristic to exploit PR techniques such
asmodule reuse to reduce the number of reconfigurations. However,
their approach does not consider the use of PR to increment the
resource sharing of the RPs . Our approach, instead, considers not
only the module reuse during execution time but takes advantage
of task’s similarities to share logic resources of RPs. A more similar
work to the one presented here is presented in [16]. The authors
propose the resource sharing of RPs by merging tasks of stream-
ing applications thanks to identifying similarities between tasks.
Although our approach addresses similar applications, our strat-
egy prioritizes the maximum area reuse of RPs while reducing the
number of reconfigurations on a PCIe-based FPGA. Despite the fact
that none of the mentioned works uses PCIe , PR through PCIe has
been already targeted in [17] and [18]. Our proposed NE presents a
more complex application which benefits from the current state-of-
the-art technology [19]. As far as we are aware, the presented NE
is one of the first applications using the recently introduced Xilinx
MCAP [20] to partially reconfiguring the FPGA through PCIe.

4 NETWORK EMULATOR DESCRIPTION
The main purpose of the NE (Figure 2) is to mimic the function-
ality of a network composed of microphone array nodes and to
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Data Fusion Engine

Position

Array

Topology

Evaluation

Error Magnitude

Figure 3: Execution steps of the NE . The sound sources are generated
and processed by the nodes. The nodes of the network are reconfigured
based on the error obtained after the evaluation of the data fusion.

evaluate the network’s response for certain acoustic scenarios. This
network increases the accuracy of the sound-source location by
combining the response of each node. This information is used as an
early estimation about how the network would react in real-world
scenarios and allows a fast design space exploration in order to
target priorities like overall power consumption or the accuracy
of the sound-source localization. Our NE is flexible enough to sup-
port multiple network topologies, different sound-source detection
methods or a variable number of nodes and sound sources.

Figure 3 summarizes the execution steps of the NE. One or mul-
tiple sound sources are generated for a target scenario composed
of a variable number of nodes. Each execution consists of several
iterations to compute all the necessary nodes on the available RPs .
The data collected from the nodes, the polar steering response maps,
are fused and used to estimate the position of the sound sources.
An evaluation of the error is done by considering the estimated po-
sition where the sound source is located and the known position of
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(a) Fetching polar steering response map from the FPGA (b) Fusing the data to locate the sound source

Figure 4: The data fusion front-end is capable of simulating a sound field with multiple sound sources (green diamond) and multiple nodes
(red circles). The front end generates PDM signals for each microphone in each node that are then sent to the FPGA back end. The FPGA generates
the corresponding polar steering response map (a) which is then fed to the data fusion algorithm to generate a probability map (b) and estimate
the localization error.

(a) One node (b) Two nodes (c) Four nodes

Figure 5: Our data fusion technique combines the polar steering response map produced by each node to generate a probability map that
estimates the location of the observed sound sources. As more nodes are used, the localization accuracy is improved. This technique has been
adapted from [1].

the sound source. Then, based on the target strategy under evalua-
tion, the network is readjusted by partially reconfiguring the nodes
with different configurations. The overall network power consump-
tion or the accuracy of the sound source location are examples of
potential strategies.

4.1 Distributed Functionality
The NE is built using the node’s architecture described in the pre-
vious section. Thanks to the scalability and flexibility of the ar-
chitecture, each node of the network can present a different con-
figuration. The network is designed to preserve this flexibility in
order to adapt its response for the variances in the acoustic envi-
ronment. Therefore, the NE must support multiple node’s possible
configurations [6]. Some configurations are supported thanks to
control signals, to disable certain microphones, or through PR, spe-
cially when evaluating the use of different architectures. Further
details regarding the supported node’s configurations are provided
in Section 4.4.

Figure 2 depicts the main components of the NE, which are
distributed between the host and the FPGA:

4.1.1 Host. The host contains the sound source generator, the
data fusion of the polar maps and the evaluation of the data fusion.
A graphical user interface (Figure 4) abstracts the user from these
computations and from the host-FPGA communication and PR.
The graphical user interface consists of a front-end generated in
Matlab that communicates with the FPGA back-end through a
middleware. The front-end is capable of simulating a sound field
with multiple sound sources and nodes. Each sound source can have
different frequency bands and each node can have different array
configurations and calculation methods. Multiple sound sources
are converted to PDM format in order to be compatible with the
expected input data format of the node. The front-end is also capable
of generating probability maps with the polar steering response map
produced by the nodes on the FPGA.
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Figure 6: Node’s design emulated in the NE using P-SRP detection method. Each node is composed of a MEMS microphone array, a filter stage,
a beamforming stage and a detection stage.

The front-end uses data fusion to locate sound sources. Data
fusion techniques combine the information gathered by different
sensors measuring the same process to enhance the understanding
of that process. In the context of this article, data fusion is performed
by aggregating and combining the acoustic directivity information,
represented as a polar steering response map, gathered by each node
to produce a probability map of the location of the observed sound
sources in a two-dimensional field. This technique is originally
presented in [1] and has been used to validate the capacity of their
microphone array design to locate sound sources (Figure 5).

Based on the data fusion results, the front-end calculates three
error parameters: the localization error (in meters), the number
of undetected sound sources and the number of phantom sound
sources.

The front-end allows us to create a network of nodes and to
validate our architecture with a permutation of different scenarios:
array architecture, detection method, sound spectrum, and sound-
source positions.

Finally, a middleware abstracts the application from the accel-
eration on the FPGA by managing the nodes’ configurations, the
FPGA’s PR and the host-FPGA communication. Further details
about the heuristics for the placement and schedule of the nodes
are detailed in Section 5.

4.1.2 PCIe Communication. The communication between the
host and the FPGA uses the Xilinx PCIe DMA driver available
in [21]. This driver enables the interaction of the software running
on the host with the DMA endpoint IP via PCIe.

4.1.3 FPGA. On the FPGA side, the NE uses the IP core DMA
subsystem for PCIe [22]. This IP core provides support for different
types of reconfiguration through PCIe, such as Tandem, Tandem
with Field Updates and PR. In our case, the IP core DMA subsystem
for PCIe with PR support is used. The DMA capability of this core
is configured to act like an AXI4 bridge, operating at 125 MHz and
with an AXI4 stream interface of 256 bitwidth. The HDL code of
each node is encapsulated in an AXI4-Stream Wrapper in order
to be compatible with AXI4-stream. This AXI4-Stream Wrapper

Ring 4 (Ø = 18 cm): 24 mics

Ring 3 (Ø = 13.5 cm): 16 mics

Ring 2 (Ø = 8.9 cm): 8 mics

Ring 1 (Ø = 4.5 cm): 4 mics

Figure 7: Sound-source localization device composed of 4 digital
MEMS microphone subarrays.

interfaces an input AXI4-Stream FIFO, both integrated in aNode Em-
ulator entity. The NE is composed of 4 Node Emulators operating
at 62.5 MHz and with a 64-bits AXI4-Stream interface each. Finally,
the output AXI4-streams of the Node Emulators are combined in
a 256-bits AXI4-Stream to interface the PCIe DMA Subsystem IP
core.

4.2 Node Description
The original architecture proposed in [5] has been improved in [6]
by rearranging the detection method (DM) in a modular fashion
and by reducing the control management. The filter stage has been
also modified to operate uninterruptedly during the beamed ori-
entation transition. The implementation of the node’s architecture
on the FPGA (Figure 6) is done in VHDL and designed to process
in stream fashion. Moreover, the nodes of the NE are composed of
several cascaded stages operating in pipeline for a fast sound-source
location.

4.2.1 Microphone Array. The audio data is acquired by the mi-
crophone arrays and expressed as a multiplexed pulse density mod-
ulation (PDM). The microphone array is composed of four concen-
tric subarrays of 4, 8, 16 and 24 digital MEMS microphones [23]
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mounted on a 20-cm circular printed board (Figure 7). Each sub-
array is dynamically activated or deactivated in order to facilitate
the capture of spatial acoustic information using a beamforming
technique. The distributed geometry of the subarrays allows the
adaptation of the sensor to different sound sources. Therefore, the
computational demand is adapted to the surrounding acoustic field,
making the sensor array more power efficient if only a necessary
number of subarrays are active. The emulation of the microphone
array is partially done at the host side by the sound generator. The
sound wave corresponding to the sound sources are generated in a
PDM format for each microphone based on the node to be emulated
and the position of the microphone in the node. The frequency
band of the audio sources ranges from 100 Hz up to 15 kHz. In or-
der to respect the technical specifications of the ADMP521 MEMS
microphones, the generated audio signals are oversampled at 2
MHz.

4.2.2 Filter Stage. The single-bit PDM signal needs to be filtered
to remove the high-frequency noise and to be downsampled to re-
trieve the audio signal in a Pulse-Code Modulation (PCM) format.
The removal of the undesired high frequency noise and the down-
sampling is done at the filter stage. Thus, each microphone signal
has one cascade of filters to downsample and to remove the high-
frequency noise. The first filter is a 4th order low pass Cascaded
Integrated-Comb (CIC) decimator filter with a decimation factor of
16. This type of filter only involves additions and subtractions [24],
which significantly reduces the resource consumption. The CIC
filter is followed by a 32-bits running average block to reduce the
microphone DC offset and by a 15th order serial low-pass FIR filter
with a cut-off frequency of 12 kHz and a decimation factor of 4
completes the filter chain. The serial design of the FIR filter drasti-
cally reduces the resource consumption, but limits the maximum
order of the filter, which must be equal to the decimation factor
of the CIC filter. The data representation is a signed 32-bits fixed
point representation with 16 bits as fractional part. The filter’s co-
efficients are represented with 16 bits. However, the bitwidth is
higher in the filter to keep the proper data resolution due to some
internal filter operations, but the inter-filter data representation is
set to constant by applying the proper adjustment at the output of
each filter.

4.2.3 Beamforming Stage. Beamforming techniques focus the
array to a specific orientation by amplifying the sound coming from
the pre-defined direction, while suppressing the sound coming from
other directions. Therefore, the directional variations of the sur-
rounding sound field are measured by continuously steering the
focus direction in a 360° sweep. Our Delay-and-Sum based beam-
former is applied to 64 orientations, which represents an angular
resolution of 5.625 degrees.

The filtered signal of each microphone is delayed by a specific
amount of time determined by the focus direction, the position vec-
tor of the microphone and the speed of sound. All possible delays
are precomputed, grouped based on the supported beamed orien-
tations and stored in block RAMs (BRAM) during the compilation
time. Therefore, the 32-bits filtered audio of each microphone is
delayed based on the precomputed values and grouped following

their subarray structure to support a variable number of active mi-
crophones. Thus, instead of implementing one simple beamforming
operation of 52 microphones, there are four beamforming oper-
ations in parallel for the 4, 8, 16 and 24 microphones. Only the
beamforming block linked to an active subarray is enabled, while
the disabled beamformers are set to zero.

4.2.4 Detection Stage. The polar steering response maps are ob-
tained at this stage. The output data is normalized based on the
maximum output value for each complete loop. The normalized
outputs need to be represented with at least 16 bits to avoid errors
due to the data representation.

We distinguish here 2 different DMs . Both methods, already
proposed in [3], can be available by partially reconfiguring the
node’s architecture based on the active subarrays:

Polar Steered Response Power: The original architecture in [1] pro-
posed the Delay-and-Sum beamforming technique. This technique
uses the added beamformed values to calculate the output power
of the signal per orientation in the time domain. The computation
of this output power for different beamed orientations defines the
Polar Steered Response Power (P-SRP). The P-SRP informs in which
direction the sound-source is located since the maximum power
is obtained when the focus corresponds to the location of a sound
source.

Cross Correlation: The cross-correlation (CC) method is based on
the cross-correlated pairs ofmicrophones. Thus, the time-differences-
of-arrival (TDoA) is the lag associated with the maximummeasured
correlation. The P-SRP method is more robust to reverberation and
noise effects [25] since it considers all available information. Never-
theless, we propose the alternative implementation ofCC where all
the global information is used and the difference between beamed
orientations is amplified. Once the audio is beamformed, the au-
dio data of all microphones are cross-correlated with each other
and accumulated. Thus, once the audio data is properly delayed,
the maximum of the positive values determines the location of a
sound source. This CC method, however, demands a high number
of multiplications because all possible pairs of microphones need to
be correlated. The total number of multiplications (Mam ) depends
on the number of active microphones (Nam ) and is expressed as
follows:

Mam =
Nam · (Nam − 1)

2 (1)

Unfortunately,Mam drastically increases when increasing the
number of active microphones. For instance,Mam = 6 when only
the inner subarray, composed of 4 microphones, is active. Further-
more,Mam increases from 66 to 1326 when activating the first two
inner subarrays (12 microphones) or all subarrays (52 microphones)
respectively. This fact has a significant impact in the resource con-
sumption, since not only a large number of DSPs are consumed but
also the LUTs used to keep the fixed point precision. Each multipli-
cation extends the 32-bits fixed point data representation to 64 bits,
which is adjusted to 32 bits again before the next multiplication in
the multiplication tree [3].

The CC method promises better accuracy when using a lower
number of microphones. The theoretical implementation needs
66 multiplications in order to reach all possible combinations of
the 12 active microphones. However, in order to save resources
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Perspective Evaluation

Detection Method
Node (FPGA) Number of active microphones

Number of orientations
Sensing time

Data Fusion techniques
Network (Host) Power efficiency topology

Data desynchronization

Table 1: The proposed platform enables the exploration of multiple
node’s and network’s configurations.

while maintaining the maximum flexibility, the implementation
under evaluation only considers the combinations between the
microphones of a subarray and not the combinations between the
microphones of different subarrays. Therefore, the number of mul-
tiplications is reduced to 32, with 6 and 28 multiplications for the 4
microphones of the inner subarray and the 8 microphones of the
second subarray respectively. Because this modular CC promises
higher accuracy, it is an interesting candidate to replace the P-SRP
method when a low number of microphones is active. The analysed
CC method in our experiments only considers the use of the two
inner subarrays.

4.3 Accuracy
The effective dynamic range of the floating point data representa-
tion provides a high accuracy at the cost of a high resource con-
sumption and a performance cost, which discourages the use of
floating point operations in the node’s architecture. The alternative
fixed point data representation, however, induces undesired er-
rors [26], [27]. The most sensitive blocks of the node’s architecture
are located in the filter and the detection stages. A variable fixed
point representation is applied at each node’s stage to minimize
the errors induced by this type of data representation. The internal
operations in the filters are scaled in order to provide enough bits
for the data representation. However, in order to reduce the overall
resource consumption, the output of each block is rescaled to signed
32-bits fixed point representation with 16 bits of fractional part.
The evaluation of the impact in the accuracy of the node’s response
has been performed for each supported frequency by comparing
the results with our reference model programmed in Matlab which
mimics the node’s architecture and is already used in [3], [4], [5]
and [6]. As a result, the fixed point data representation at each stage
of the node’s architecture guarantees an average relative error of
2.42 × 10−5, compared to floating-point data representation.

4.4 Design Space Exploration
Table 1 summarizes the most relevant parameters that can be eval-
uated in our platform. Some parameters are related to the node’s
architecture while others are relevant at the network perspective.
Although the node’s parameters like the impact of the number of
orientations or the sensing time have been discussed in [6] from
the performance point of view, the NE allows the evaluation of
the network’s configurations. For instance, different data fusion

Parameter Definition Range

DM Detection Method [P-SRP, CC]
Nam Number of active microphones [4, 12, 28, 52]

Table 2: The experimental results detailed in Section 6 are obtained
by evaluating different node’s configurations.

techniques or network topologies for a lower network’s power con-
sumption can be evaluated. Moreover, the error induced by the data
desynchronization from the nodes can be estimated. Notice that,
due to the distribution of the functionality, the node’s parameters
affect to the FPGA design while the network’s parameters affect
to the code running on the host. Therefore, in order to focus on
how PR can be exploited by our platform, only a couple of node’s
parameters are considered for the design space exploration.

The node’s architecture permits the modification of Nam in run-
time (Figure 6) to adapt the node’s response to the dynamic behavior
of acoustic environments. However, Nam has a significant impact
in the area consumption and in the node’s power consumption as
detailed in [6]. This fact makes Nam an interesting parameter to
be evaluated from a network point of view because while a lower
Nam leads to a lower node’s power consumption, a lower accuracy
is the price to pay. Further details about the node’s architecture,
demanded hardware resources and the impact of the supported
configurations are detailed in [6].

Although different node’s configurations are supported in run-
time, this does not occur with the DMs , since only one of the
proposed DMs can be allocated on the FPGA. As a consequence,
the switch between the proposed DMs is only possible when us-
ing PR. Nevertheless, the evaluation of the DMs is fully supported
in our NE for the two inner subarrays. Both parameters are used
to evaluate networks composed of nodes with variable values of
Nam and DMs (Table 2). The experimental results are presented in
Section 6.

5 STRATEGIES FOR EXPLOITING
PARTIAL RECONFIGURATION

The middleware, located in the host side, is not only in charge of
the host-FPGA communication through PCIe but also to control
and to optimize the PR. This layer abstracts the front-end from the
back-end configuration. While the user only needs to configure
the topology of the network, the nodes’ configuration and the
sound sources, the middleware optimizes the execution of the NE
by merging and scheduling the nodes in the available PRs . Thus,
the user does not need any knowledge about the RPs configurations
or in what RP a particular node is emulated.

One execution of the NE consists of the emulation of a certain
number of nodes under an acoustic context. The middleware dis-
tributes the nodes between the available RPs . Several iterations
are needed in case the number of nodes to be emulated (nnode ) is
higher than the number ofRPs (nRP ). Thus, the number of iterations
(niter ) is defined as:

niter =
⌈nnode
nRP

⌉
(2)
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Figure 8: Our approach consists of several heuristics to optimize the
area reuse and to improve performance by reducing PR . Firstly, the
nodes’ configurations are classified and sorted based on their com-
patible RMs . Secondly, the increment of the area reuse is possible by
merging similar nodes’ configurations to increase the overall LP . Fi-
nally, an optimized scheduler minimizes the PR by properly allocat-
ing the nodes.

Thanks to the independence of the nodes, there are no data depen-
dencies. This fact simplifies the middleware decisions. Thus, the
middleware uses some heuristics to optimize the merging of compat-
ible node’s configurations in order to exploit the available resources
in one RP , and also optimizes the scheduling of the computation
of the merged node’s configurations. As a result, the middleware
not only allows the abstraction of the user about of the NE internal
configuration but also to exploit PR for increasing performance.

5.1 Increasing Network Capabilities
The dynamism required to reduce the estimation error under un-
predictable acoustic scenarios is enhanced thanks to PR. A clear
example occurs when minimizing the overall network power con-
sumption while offering accurate sound sources location. The over-
all power consumption and the accuracy are directly related to
the Nam . Thus, a trade-off is needed in order to get the highest
accurate estimation with the minimum power consumption. PR has
a role when considering alternative architectures to enhance the
quality of results. That is the case of the CC method, which is only
applicable for a lower number of microphones where it promises
better accuracy. In that case, PR allows the dynamic modification of
the network configuration in runtime to satisfy power constraints.
Such evaluation in the NE would not be possible without PR. Oth-
erwise, the platform had to be completely reprogrammed and a
reboot would be needed in order to let the operating system identify
the reconfigured PCIe device. Our experimental results in Section 6
cover this example.

5.2 Heuristics to Increase Performance
Figure 8 shows the heuristics used by the middleware to increase
performance. PR can only be exploited for higher performance
by properly placing and scheduling the nodes to be accelerated.
Furthermore, we propose the use of PR to exploit the configurations’
compatibilities in order to better use the available resources.

An existing cost table (CT ), like Table 3, is used to decide at
each step of the heuristics. Such table is elaborated at design time

Configuration Time Cost Area Cost Compatibility
52 Mics 1.0834 ± 0.0029 1 RM52
28 Mics 1.0753 ± 0.0024 1/2 RM52, RM28
12 Mics 1.0679 ± 0.0023 1/4 RM52, RM28, RM12
4 Mics 1.0677 ± 0.0023 1/4 RM52, RM28, RM12

Table 3: Cost table of the node’s configurations for the second exper-
iment with the NE. The time values are expressed in seconds.

Parameter Definition

RP Reconfigurable Partition
RM Reconfigurable Module
CT Cost table
LP Level of parallelism. Inverse of the area cost
P -SRP Polar steered response power
CC Cross-Correlation
DM Detection Method
Nam Number of active microphones
Mam Number of multiplications
nnode Number of nodes’ configurations per execution
niter Number of iterations needed by one execution
nRP Number of RPs
nRC Number of PR
N Initial nodes’ configuration list
NI Sorted and classified nodes’ configuration list
NM Merged nodes’ configuration list
NT Temporal nodes’ configuration list
NS Scheduled nodes’ configuration list
Stemp Temporal set of RP ’s configurations
Snode [i] Set of RP ’s configurations on iteration i

Table 4: Abbreviations used for the description of the NE and the
presented heuristics.

and contains information about the relative area cost of the con-
figurations, related to the most area demanding configuration, and
information about configurations’ compatibilities. From one side,
the relative area cost reflects the configuration’s level of parallelism
(LP ), which is used to merge compatible node’s configurations. In
fact, LP is the inverse of the relative area cost since it represents
the number of nodes with a certain configuration that can be exe-
cuted in parallel per RP . From the other side, the configurations’
compatibilities relate a certain configuration with its supported
RMs . Thanks to the flexible architecture of the nodes, the number
of active microphones varies from 4 to 52 MICs. Their activation is
in runtime through control signals and does not require any type
of PR. As a consequence, certain RMs support multiple node’s con-
figurations depending on the dedicated logic resources. Thus, the
RM52 not only supports 52 microphones but also 28, 12 or 4. Such
flexibility is used to reduce the number of PR in order to achieve
higher performance. A summary of the abbreviations used for the
NE description is done in Table 4.

5.2.1 Classification. The nodes are classified based on an exist-
ingCT like Table 3. This classification identifies the compatibleRMs
and the LP that can be achieved based on their type. Algorithm 1

8



Algorithm 1: Classification of nodes.
input :Nodes’ configuration list N ,CT
output :Sorted and classified node list NI

1 begin
2 NI ← Sort nodes based on their area cost (N ,CT );
3 NI ← Find Compatible RM (NI ,CT );
4 end

details the operations involved during the nodes’ classification. N
is composed of multiple nodes’ configurations, which can be opti-
mally parallelized and scheduled to minimize the execution time.
The relative area cost of each node is used as reference to sort the
nodes’ list in decreasing order. Lately, the nodes’ list is evaluated
to identify the compatible RMs per configuration.

Algorithm 2: Merging of the nodes’ configurations.
input :Nodes’ configuration list NI
output :Merged configuration list NM

1 begin
2 NM ← ∅;
3 NT ← ∅;
4 for i ∈ NI do
5 if AreaCost(i ) = 1 then
6 NT ← conf iд(i);
7 AccAreaCost(NT )← AreaCost(conf iд(i));
8 CompatibleRMs(NT )← SmallestRM(NT ,conf iд(i));
9 NM ← InsertIn(NM ,NT );

10 end
11 else
12 if AreaCost(i )+AccAreaCost(NT )> 1 then
13 NM ← InsertIn(NM ,NT );
14 NT ← conf iд(i);
15 AccAreaCost(NT )← AreaCost(conf iд(i));
16 CompatibleRMs(NT )← SmallestRM(NT ,conf iд(i));
17 end
18 else
19 NT ← InsertIn(NT ,conf iд(i));
20 AccAreaCost(NT )←AccAreaCost(NT ) +

max(AreaCost(conf iд(i)),AccAreaCost(NT ));
21 end
22 end
23 end
24 end

5.2.2 Merging. The merging of the nodes’ configurations con-
sists of grouping the maximum number of compatible configu-
rations in one RP in order to exploit the otherwise unused re-
sources. For instance, in case NI = [52, 52, 52, 28, 28, 12, 12, 12, 12]
the nodes with Nam = 28 and Nam = 12 can be computed in
parallel in RPs configured with RM28 and RM12 respectively (Ta-
ble 3). Since the RMs are associated to the nodes’ configurations
after the merging heuristic, NM for the previous example results
in NM = [RM52,RM52,RM52,RM28,RM12]. Notice that niter is
reduced in one unit thanks to this merging (Eq. 2). In fact, the
reduction of niter is the main objective of this heuristic.

Algorithm 2 shows how nodes are merged based on their LP
to place in each RP as many nodes as possible. This merging in-
tends to reduce niter and, potentially, the overall execution time.
Algorithm 2 starts scanning the list of configurations in increasing
relative area cost order. There are three possibilities:
• If the configuration consumes a complete RP , which occurs
when its cost equals 1, the configuration cannot share anyRP .
Thus, this configuration is allocated to the largest compatible

RM in order to maximise the reuse of this RP . Otherwise, if
the demanded relative area cost of the configuration is lower,
it can be evaluated for sharing a RP .
• In case the addition of the configuration’s cost and the ac-
cumulated area cost of the already allocated nodes is higher
than one RP , this RP is locked. Firstly, the grouped con-
figurations are moved to the configurations’ list NM since
they cannot longer share the resources of one RP . Secondly,
the new unassigned node’s configuration is assigned to the
smallest compatible RM to limit the sharing to the most
constrained situation.
• In case area cost of the configuration allows the addition
of this node’s configuration to the existing configurations’
group, the accumulated area cost (which represents the per-
centage of occupancy of the RP ) is incremented by the maxi-
mum area cost of new node’s configuration. In this way, the
area cost of the largest node’s configuration dominates and
thus unfeasible situations are avoided.

As a result, the configurations are categorized in the compatible
RMs which maximize the area reuse and potentially increment the
overall performance by decreasing niter .

Algorithm 3: Scheduling of the merged nodes.
input :Merged configuration list NM
output :Scheduled configuration set Snode

1 begin
2 NS ← ∅ ;
3 Stemp ← ∅ ;
4 Snode [0] ←InitialRPsConfig;
5 for i ∈ niter do
6 Stemp ← Snode [i − 1];
7 for j ∈ nRP do
8 for k ∈Size(NM ) do
9 if Config(Stemp (j)) = Config(NM (k )) then
10 Snode [i] ←InsertConfigInRP(NM (k ),j );
11 Snode [i] ←MarkAsConfigured();
12 NM ← RemoveConfigfromList(NM , k );
13 break;
14 end
15 end
16 end
17 if NofElements(Snode [i]) < nRP then
18 for j ∈ NotConfigured(Snode [i]) do
19 if NofElements(NM ) > 0 then
20 HM ← CalcHistogram(NM ) ;
21 idxnode ← FindMostFreqConfig (HM ) ;
22 Snode [i] ←InsertConfigInRP(NM (idxnode ),j );
23 Snode [i] ←MarkAsConfigured();
24 NM ← RemoveConfigfromList(NM , idxnode );
25 end
26 else
27 Snode [i] ←Config(Snode [i − 1]);
28 Snode [i] ←MarkAsConfigured();
29 end
30 end
31 end
32 end
33 end

5.2.3 Scheduling. Once the nodes have been merged, they need
to be properly scheduled in order to minimize the number of recon-
figurations (nRC ). The strategy consists in maximizing the reuse of
the RP ′s previous configurations between iterations of one execu-
tion.

Algorithm 3 details how the merged configurations in NM are
scheduled based on the configuration of the RPs in each iteration.
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Resources Available Static RP 0 RP 1 RP 2 RP 3
Slice Registers 663360 18413 93600 (51.42%) 102400 (46.97%) 103200 (46.64%) 102400 (47.00%)
Slice LUTs 331680 16209 46800 (78.81%) 51200 (72.05%) 51600 (71.50%) 51200 (72.07%)
LUT-FF Pairs 331680 7026 46800 (50.97%) 51200 (47.39%) 51600 (46.01%) 51200 (47.24%)
BRAM 1080 47 170 (28.24%) 170 (28.24%) 170 (28.24%) 170 (28.24%)
DSPs 2760 0 460 (24.35%) 460 (24.35%) 460 (24.35%) 460 (24.35%)
Bitmap Size 4,762 MB 4,762 MB 4,764 MB 4,762 MB
Clearing Time - - 0.0826± 0.0047s 0.0836 ±0.0044s 0.0848 ± 0.0031s 0.0836 ± 0.0040s
Reconfig. Time 1.0908± 0.0042s 1.0988± 0.0056s 1.0947± 0.0050s 1.0945± 0.0054s

Table 5: Resource consumption of the static and dimensions of the RPs , including their highest percentage of occupancy.

The RP ′s configuration of the previous iteration is used as initial
RP ′s configuration of the iteration under scheduling. Thus, the
list NM is traverse looking for the same RM loaded in the target
RP . If found, the node’s configuration is assigned to that RP at
that particular iteration. The process continues for the next RP
until all the available nRP are assigned. If there is no compatible
node’s configuration with the available RPs at a certain iteration,
it could be possible that either all the nodes have been allocated
or PR is needed. Based on the number of unallocated nodes, it is
possible to distinguish how to proceed. On the one hand, if PR is
needed, the most frequent configuration of the unallocated nodes is
selected. This configuration is obtained through the calculation of a
histogram and maximizes the potential reuse of this configuration
over the remaining iterations. On the other hand, the remaining
unassigned RPs keep their configuration from the previous itera-
tion to avoid additional and unnecessary PR if there are no more
unallocated nodes. The process continues this way until no com-
patible tasks are available. The PR of some RPs is then mandatory
to compute the remaining tasks. Finally, it might be possible that
the computation of some RPs is not required. This occurs when
nRP /nnode is not an integer number. In that case, the RPs maintain
their configuration from the previous iteration to avoid additional
and unnecessary PR.

For the sake of understanding, the scheduling heuristic is applied
to the previous example. We assume some initial RPs ′ conditions
and the previous values of NM :

InitalRPsConf iд = [RM28, RM52, RM12, RM52]

NM = [RM52, RM52, RM52, RM28, RM12]

The scheduling heuristic distributes the elements of NM between
the required niter based on the previous iterations RPs ′ configu-
rations. Therefore, the execution order to minimize nRC results as
follows:

Snode [1] = RM28, RM52, RM12, RM52

Snode [2] = − , RM52, − , −

where− represents an unusedRP in one particular iteration. Thanks
to both heuristics, niter has been reduced to 2 iterations, multiple
configurations are computed in parallel and there is no need for
PR.

5.3 Partial Reconfiguration over PCIe
Despite the minimization of PR between iterations due to our sched-
uler, PR might be unavoidable due to the initial configuration of
the RPs and the list of nodes to be executed. Our PR uses the Media

Reconfigurable Partition 0

Reconfigurable Partition 1

Reconfigurable Partition 2

Reconfigurable Partition 3

Static 

Logic

Figure 9: FPGA floorplanning when all nodes have their subarrays
active. The four reconfigurable partitions of the NE are framed into
purple boxes.
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Figure 10: List of bitmap files required for the experiments evalu-
ating DM and the use of PR for acceleration detailed in Section 6.

Configuration Access Port (MCAP) [19], which is a new config-
uration interface available for UltraScale devices that provides a
dedicated connection to the ICAP from one specific PCIe block per
device. This interface is integrated into the PCIe hard block and
provides access to the FPGA configuration logic through the PCIe
hard block when enabled. The bitstream loading across the PCIe to
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Figure 11: The localization error, using one sound source and four nodes at three different frequencies, improved as the total number of micro-
phones in the network increased. Both methods, P-SRP and CC, performed equivalently.

configure the RPs of the NE is detailed in [20]. The detailed process
is only applicable for UltraScale architectures since these architec-
tures need clearing bitstreams in order to prepare the RP for the
new configuration. Consequently, each new reconfiguration of one
RP of the NE requires a clearing operation before being reconfig-
ured. Otherwise, the subsequent RM cannot be initialized [19]. It
demands a knowledge of what RM is configured at each RP . This
task is done at the host side by the middleware, which monitors the
status of the nodes and applies the proper clearing reconfiguration
before each PR of a node.

5.3.1 Cost Table. The CT of the NE shown in Table 3 has been
partially defined at design time. It lists the different node’s con-
figurations to be executed on the FPGA, their relative area cost
and the compatibility between the defined RMs . The current CT
considers 4 different configurations of the nodes based on the active
microphones and using the P-SRP method. Thus, the microphones
of all subarrays are active when Nam = 52, which is the most area
demanding configuration. Thanks to the flexibility of the nodes,
Nam can be modified at runtime without the need of PR. Therefore,
the largest configuration is able to support all considered node’s
configurations. To exploit the unused resources of a RP when con-
sidering low area-demanding node’s configurations (Nam < 12),
several node’s configurations are placed in parallel per RP . For
instance, when Nam = 12 up to 4 instances can be placed in a
RP dimensioned for the Nam = 52 node’s configuration. Here is
where PR has a role for performance acceleration. Of course, such
acceleration is determined by the overhead due to partially recon-
figure a RP and the time cost of each configuration. The time cost
shown in Table 3 is the averaged execution time experimentally
measured after 100 executions.

5.3.2 Defining Reconfigurable Partitions. Figure 9 depicts the
4 RPs available on the NE. The sizes of the RPs are determined
by the nodes’ configuration sizes and the dedicated I/O channels.
Firstly, the RPs ′ size must be large enough to support different
node’s architectures based on Nam or DM as detailed in Table 2.
Nevertheless, the RPs have a fixed dimension independent of the
node’s parameter under evaluation since hierarchical PR is not sup-
ported [28]. Thus, our RPs are designed to fit the most demanding

resource node’s configuration, which is T52Mics based on Table 3.
Secondly, the 64-bits dedicated AXI4-Stream interface also limits
the maximum LP per RP . Due to the characteristics of the node
emulation, each normalized output needs to be represented with
at least 16 bits, which limits to 16 the number of nodes simulta-
neously allocated on the FPGA. Finally, notice that the RPs better
adjust the available resources to the most area demanding node’s
configuration with respect to [3], [4].

Figure 10 depicts the list of supported RMs based on the exper-
iments presented in Section 6. Notice that each RP supports the
same number of RMs . For instance, there are 4 different RMs based
on the number of active subarrays when using the P-SRP method.
Table 5 details the dimensions of the RPs and their percentage of
occupancy when configured with RM52. Their values slightly vary
since not all RPs have exactly the same size, containing a different
number and type of slices.

5.3.3 Partial reconfigurationOverhead. The reconfiguration time
per RP , including the cleaning operation and the PR rounds to 1.09 s.
It represents a relatively slow PR when considering the PCIe the-
oretical bandwidth and the size of the RP bitstream files, which
rounds to 4.762 MB. Nevertheless, the time values have been exper-
imentally obtained at theMCAP driver side.

6 EXPERIMENTAL RESULTS
A couple of experiments are detailed in this section to demonstrate
some of the capabilities of the NE and the benefits of PR. The
sound field simulation used in the front end has been optimized for
a two dimensional open field where sound attenuation, caused by
propagation, has been assumed to be negligible. All the experiments
demand a PR involving one or more RMs . The first experiment
demonstrates how PR is used to evaluate different DMs for several
node’s configurations and sound source profiles. The main purpose
is to show how the capabilities of the NE are extended thanks
to PR. Thus, different DMs can be evaluated in runtime, which
could not be possible without PR. Our strategies and heuristics
are evaluated in the second experiment, which exemplifies how
the use of PR can lead to a significant performance improvement.
The increment in performance comes from the better resource
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Figure 12: The niter is reduced by merging nodes.

exploitation. As a result, NE executions are accelerated when the
network is composed of a minimum number of nodes.

All the supported node’s configurations (Table 2) are imple-
mented and stored in the host side. As a result, the bitmaps re-
quired to run the experiments detailed in this section (Figure 10)
are loaded to the NE by using PR through PCIe when needed. Be-
cause no bitmap compression technique has been applied, all the
bitmaps associated to one RP have the same size (Table 5). The
bitmaps are grouped based on the experiment where they are used.
However, some bitmaps like RP_RM12_PSRP are used in both ex-
periments. Finally, a static bitmap file contains the static logic and
the initial RMs’ configuration.

The FPGA card used for the implementation of the NE is a Xilinx
Kintex Ultrascale from Alpha Data (ADM-PCIE-KU3), whose avail-
able resources are detailed in Table 5. It provides a Gen3 PCIe con-
nection, supporting up to two PCIe x8 controllers. Vivado 2016.4 has
been used to develop the PCIe DMA Subsystem and the PR through
design flow. The system has been implemented in an Ubuntu 14.04.1
machine that uses C/C++ code, bash scripts and Matlab 2016b.

6.1 Impact of the Detection Methods
The PR feature of the NE provides the capability to evaluate dif-
ferent node’s configurations. The following experiment intends to
demonstrate how the PR allows the comparison of two different
DMs from the network point of view.

Figure 11 shows the average error in the estimation of the sound
source when applying data fusion of 4 nodes using the two inner
subarrays. The values have been obtained for a random position of
a standalone sound-source at 3 different frequencies (4, 8 and 10
kHz). The RMs are partially reconfigured to switch between both
methods. The evaluation also considers the permutations of all
possible combinations of the two inner subarrays. Thus, the top left
error value corresponds to the 4 nodes with only the inner subarray
active while the top right corresponds to all the nodes with two
inner subarrays active. The results show that the CC method does
not offer a significant improvement compared to the P-SRP method.

Despite offering a lower estimation error, its implementation in a
distributed network of microphone arrays is not completely justi-
fied considering the additional resource consumption due to the
required multiplications. Nevertheless, further experiments must
be done with different sound-source frequencies, with real mea-
surements and in an anechoic room before discarding completely
the advantages of the CC method.

6.2 Partial Reconfiguration for Higher
Performance

The use of PR to increment performance is evaluated through mul-
tiple executions with nnode and random Nam per node. All the
experimental results explained here have been obtained after 10000
executions of up to 100 random nodes per execution. Only the P-SRP
method is considered in this experiment. The only difference in the
node’s configuration is Nam , which directly affects the node’s re-
source consumption. Therefore, the performance increases thanks
to an increment in the number of node’s configurations executed
in one iteration, which is done by allocating on each RP multiple
node’s configurations with small Nam .

Figure 12 depicts the required niter based on the nnode with
and without merging nodes. The niter is, by default, expressed in
Eq 2. This value can be decreased thanks to exploiting the unused
resources per RP . Thus, the merging of nodes to share resources
of one RP leads to a lower niter needed per execution. Since the
niter determines the execution time, the merging of the nodes
is expected to directly benefit the performance. Both graphs are
stepped because at least nRP nodes are executed per iteration.

Figure 13 depicts the average execution time and the overall
speedup. The non-heuristic strategy (None) is used as reference.
This strategy does not need to partially reconfigure the RP , and
therefore, does not benefit from the use of the heuristics. Each
RP is configured with the same RM52 in order to support all the
node’s configurations under evaluation. Consequently, the None
strategy time-multiplexed the nodes in the available RPs without
any merging or scheduling. The other two strategies under eval-
uation consider the proposed heuristic for merging of the node’s
configurations as standalone (Merдe) and combined with the pro-
posed heuristic for scheduling (Merдe + Schedule). Both strategies
have a random initial configuration of the RPs , which are randomly
asserted after each execution when using PR. This is the expected
behavior of the NE since the final configuration of the RPs after one
execution is unknown in advance, at least not before the execution
of the heuristics.

The results depicted in Figure 13 reflect that, although a lower
niter obtained by merging the node’s configuration in the same
RP should lead to a higher performance, the PR time overhead
decreases the overall performance. Moreover, the use of PR without
a proper scheduling induces performance decrements, which is
reflected in Figure 13. Although the merging of nodes increases the
parallelism and diminishes the niter , the PR overhead dominates
when the nodes are not properly scheduled. Executions demanding
a low nnode are specially sensitive to this overhead, because the PR
time overhead represents a large percentage of the overall execution
time. As a consequence, the proper scheduling of the nodes is not
beneficial unless a certain nnode must be computed per execution.
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Figure 13: Average execution time and speedup for different strategies.

The rightmost figure in Figure 13 represents the overall speedup
when only merging or also scheduling. Both graphs are saw waves
for the same reason the graphs in Figure 12 are stepped. Because
several nodes’ configurations are computed in parallel, the niter
remains constant while incrementing nnode . Thus, the speedup
increases when increasing nnode computed in the same amount
of time, but suddenly decreases when an additional iteration must
be computed. The proper merging and scheduling of the nodes’
configurations is only beneficial in average when nnode is higher
than 45.

7 CONCLUSION
The presentedNE has shown the capacity to evaluate differentWSN
configurations thanks to its ability to mimic the node’s response
to several sound sources. The use of PR through PCIe not only
allows us to obtain a flexible NE capable of exploring multiple
configuration scenarios in runtime but also to accelerate the NE’s
execution by exploiting the available resources and the inherent
parallelism of the node’s emulation. We believe our approach for
the NE not only provides an interesting case study of how PR
can be used to increment performance but can also be extended
for other streaming applications such as video processing, where
similar convolutional filters must be applied to different image
sources. Nevertheless, it will also be interesting to explore other
strategies like bitstream compression in order to further reduce
the PR time cost. Finally, in the current version of our emulator,
the user is able to select the node and its configuration at every
moment. Although the current version of the emulator is managed
by the user, we consider that certain level of intelligence can be
added in the control automation to determine, in real-time, the best
strategies to evolve the network configuration to obtain the lowest
power consumption with the lowest estimation error.
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