
A Lost Cycles Analysis for Performance
Prediction using High-Level Synthesis

Bruno da Silva, Jan Lemeire, An Braeken, and Abdellah Touhafi

Vrije Universiteit Brussel (VUB),
INDI and ETRO department, Brussels, Belgium

{bruno.da.silva,jan.lemeire,an.braeken,abdellah.touhafi}@vub.ac.be

Abstract. Today’s High-Level Synthesis (HLS) tools significantly re-
duce the development time and offer a fast design-space exploration of
compute intensive applications. The difficulty, however, to properly select
the HLS optimizations leading to a high-performance design implemen-
tation drastically increases with the complexity of the application. In
this paper we propose as extension for HLS tools a performance predic-
tion for compute intensive applications consisting of multiple loops. We
affirm that accurate performance predictions can be obtained by identify-
ing and estimating all overheads instead of directly modelling the overall
execution time. Such performance prediction is based on a cycle analysis
and modelling of the overheads using the current HLS tools’ features.
As proof of concept, our analysis uses Vivado HLS to predict the perfor-
mance of a single-floating point matrix multiplication. The accuracy of
the results demonstrates the potential of such kind of analysis.

Keywords: High-Level Synthesis, Lost Cycles, FPGA, Performance Pre-
diction, Overhead analysis

1 Introduction

High-Level Synthesis (HLS) tools allow FPGA designers to develop their imple-
mentations in high level languages such as C or C++. Despite the high-level rep-
resentation of the algorithms accelerates the Design-Space Exploration (DSE),
the multiple implementation choices, thanks to the large set of available opti-
mizations, make the DSE a non-trivial task. Since this kind of tools provide
detailed information about the latency, frequency and an estimation of the re-
source consumption of each implementation, we believe that current HLS tools
manage enough information to provide an accurate performance prediction. Such
performance prediction would lead to a much faster DSE of compute intensive
applications.

To address this challenge, we propose a cycle-based analysis for performance
prediction as extension for HLS tools. The principles of such analysis are origi-
nally presented in [1], [2], where the overheads of parallel programs are identified
and modelled in order to predict performance. The performance of any imple-
mentation reflects not only the quality of the implementation but also the impact

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/84040765?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of its overheads. We propose an in-depth performance analysis based on those
inefficiencies. The identification, the classification, and the modelling of those
overheads would lead to an accurate performance prediction. The analysis of the
inefficiencies, referred as overheads from now on, drives to a model which can
be used to guide and to reduce the DSE. Consequently, the most appropriated
HLS optimization can be used to reduce a particular overhead, increasing the
overall performance. Our purpose is to demonstrate that a lost cycles analysis
of compute intensive kernels leads to an accurate performance prediction using
HLS tools.

This paper is organized as follows. Section 2 presents related work. The
definition of lost cycles and their classification is introduced in Section 3. A
methodology using the proposed analysis is detailed in Section 4. In Section
5 our lost cycles analysis is applied to a well-known algorithm. Finally, the
conclusions are drawn in Section 6.

2 Related work

During the last years, researchers have proposed many techniques to reduce the
DSE. We focus on some of those models which predict and model performance
based on the exploration of the available HLS’ optimizations. Several papers
such as [3] incorporate certain overhead predictions in their performance models.
Their overhead model, however, only targets loop unrolling and do not consider
the use of HLS tools. The authors in [4] reduce the DSE by first modelling
the performance and the area before evaluating their prediction using Vivado
HLS. However, their approach only target nested loops and loop unrolling while
we consider different loop hierarchies and multiple optimizations. In [5] a divide
and conquer algorithm to accelerate the DSE using HLS tools is presented. They
propose a partition of the algorithm for their individual and exhaustive design
exploration by invoking the HLS tool, which leads to a long simulation and
synthesis runtime. Our approach only requires a short DSE using an HLS tool
to elaborate accurate performance predictions. Finally, the authors in [6] use
several HLS tools for their performance prediction. However, this approach does
not predict the performance of a single design neither the potential impact of
the optimizations, which can be obtained thanks to the lost cycles analysis.

Most of the strategies elaborate their performance models based on the per-
formance analysis of multiple configurations. Our approach targets the modelling
of the overheads in order to generate a more accurate and less time-consuming
DSE. As far as we know, this is the first time a lost cycles analysis is applied for
FPGAs, specially considering HLS tools.

3 Definition of Lost Cycles

A clock cycle can be considered as the minimum unit of time that one operation
needs to be executed. The clock cycle is defined by the operational frequency of
the design. Thus, despite the number of cycles to execute an operation changes

based on the target frequency, the time for one operation remains constant. Our
cycle-based analysis considers the frequency, which defines the accuracy of the
use of clock cycles as time unit, when calculating the performance.

Let the useful operations be the main operations characterizing the algo-
rithm to be implemented. The lost cycles (Lo) of a design are all those clock
cycles which are not dedicated to compute useful operations. The remaining
clock cycles are the useful cycles, also called compute cycles (Lc), which are the
cycles dedicated to compute useful operations. The overall number of clock cy-
cles (Limp) that an algorithm composed by n loops {L1, L2, ...Ln} needs can be
expressed as Eq. 1.

Limp = [((Lc1 + Lo1) · IL1 + (Lc2 + Lo2)) · IL2 + ... + Lcn + Lon] · ILn (1)

Eq. 1 reflects the loop hierarchy by grouping those cycles associated to each
loop. Lci and Loi are the useful and lost cycles associated to loop i respectively,
while ILi

is the number of iterations of loop i. This equation can be rearranged
to group all the useful and lost cycles as shown in Eq. 2.

Limp = [(Lc1 · IL1
+ Lc2) · IL2

+ ... + Lcn] · ILn

+ [(Lo1 · IL1
+ Lo2) · IL2

+ ... + Lon] · ILn

= Lc + Lo (2)

The use of the standalone latency reported by the HLS tool as metric of the
design performance could lead to wrong conclusions. In order to avoid any in-
coherence, we use the latency reported at certain frequency (Fimp) and the
assumption that Lc is the minimum number of clock cycles to compute at such
clock rate (Clkimp). Let OPimp be the number of operations executed in Limp,
the execution time of a design (timp) can be expressed as timp = Clkimp ·Limp.
Hence, Eq. 3 defines the design performance (Pimp) and, based on Eq. 2, reflects
how the overheads affect.

Pimp =
OPimp

timp
=

OPimp

Clkimp · (Lc + Lo)
(3)

3.1 Assumptions

Before development of our overhead analysis, we make a few more assumptions.
Firstly, we assume that each operation is exclusively composed by dedicated
amount of resources. Therefore, the consumed resources are not reused to exe-
cute different operations. Secondly, despite different types of operations (integer,
floating point, ...) must be considered, we only consider single floating-point oper-
ations (FP) to introduce our methodology. Thirdly, to facilitate the explanation
of our definitions, only DSPs are considered despite FP operations can also be
implemented using logic resources. This assumption, for instance, simplifies the
equation to obtain Lc. Nevertheless, Lc can be obtained for other type of oper-
ations, such as fixed-point integer operations, thanks to the reports of current
HLS tools. For the sake of simplicity, our analysis targets application kernels
consisting of multiple loops and compute intensive operations.

3.2 Identifying the Useful Cycles

The number of useful cycles is directly related to the number of operations im-
plemented on the FPGA. Therefore, it is possible to obtain Lc from the resource
consumption of a particular implementation. Let be OPp the number of opera-
tions which can be executed in parallel and LDSP the minimum latency of a FP
operation implemented exclusively using DSPs. Eq. 4 relates Lc with the con-
sumed area and shows how Lc decreases when the number of operations executed
in parallel increases.

Lc =
LDSP ·OPimp

OPp
(4)

3.3 The Lost Cycles Classification

The proper selection of lost cycles categories is needed for our approach. We
propose the following categories:

Initialization Overhead (OInit) The initialization overhead models those
overheads related to the filling of the stages of a pipelined operation with stream-
ing data.
Non-overlapping memory accesses (OMem) The non-overlapping memory
accesses are all those memory accesses which are not overlapped in time with
any useful computation or with another latency overhead.
Logic control (OCtrl) The latency related to the loop control or to the syn-
chronization of the operations belong to the logic control category of overhead.

Lo = OInit + OMem + OCtrl (5)

Those categories are similar, but not the same as the latency overheads iden-
tified in [3]. It may occurs that, due to pipeline operations, two overheads are
overlapped. Those overlapped lost cycles, however, must be considered only once
and included in one of the categories.

4 Proposed Methodology Overview

The proposed methodology consists in a lost cycle analysis using the HLS tool
while exploring the target optimizations. During an initial exploration phase the
impact of each optimization on the HLS design is profiled in order to fetch our
lost cycle analysis. Figure 1 shows how this initial DSE helps to identify, classify
and quantify each lost cycle in order to generate a model for each overhead.
The analysis of Lo is only possible when Lc is obtained since Limp is already
reported by the HLS tool. The parameters in Eq. 4 used to calculate Lc can be
extracted from the reports of the HLS tool, from the hardware specifications or
from empirical study.

Compute-intensive

application description

(C/C++) HLS Synthesis Report

Termination

Criteria

Lost Cycle Analysis

(Analysis Perspective)

Overhead Model

Initial DSE

Performance

Model

Optimizations:

Loop Unrolling

Pipelining

I/O directives

...

HW

Specifications:

Area

Constraints

Frequency

LDSP

(Lo,OInit,OMem,OCtrl)

(Limp,Lc,OPp)

OPimp

Estimation

(Limp, Lo)

Fig. 1: Main Steps of the proposed methodology.

• OPimp represents the total number of operations which must be executed and
is usually known.

• LDSP is specified by the hardware and is usually available in technical docu-
ments [7]. For instance, the reported latency for FP additions with our target
FPGA is 1, meaning that one FP operation can be computed per clock cycle.

• OPp determines the level of concurrency and is extracted from the resource
consumption. OPp can be easily obtained using current HLS tools, where
the resource consumption is reported for each particular design.

Once Lc, and consequently Lo are obtained for a particular design, the over-
head analysis can continue exploring the latency impact of the application size,
the compiler optimizations or source code modifications. When each overhead is
properly modelled, Lo can be estimated following Eq. 5. The performance pre-
diction of a configuration (optimizations, hardware specifications,...) is obtained
from the Lo estimation, which leads to Limp, since Lc remains constant while
none of the parameters of Eq. 4 changes.

Our methodology is designed to exploit the Vivado HLS features. Vivado HLS
not only generates a synthesis report for every design solution but also provides
a useful analysis perspective which details the intermediate operations. Both,
the information reported by the compiler and the information extracted from
the analysis perspective are used to fetch our analysis. For instance, Figure 2
exemplifies what information can be extracted from Analysis perspective for a
FP matrix addition.

Useful

cycle

Lost

cycleLost cycles

Write

Read

Initialization

Non-overlaped

memory access

Loop

control

OMem = (2 + 1) · IL1 · IL0

Fig. 2: Example of how the overheads of a FP matrix addition can be modelled.

Table 1: Example of a short DSE to profile the the optimizations and to generate a
model of each overhead.

Matrix
Size

FLOPs
(OPimp)

Optimizations Latency
(Limp)

OInit OMem OCtrl

None 1066 768 128 106
PLU x2 L0 1064 768 128 104
PLU x2 L1 1058 768 128 98

4x4 128 PLU x2 L2 858 608 96 90
Pipeline L0 97 27 3 3
Pipeline L1 103 33 3 3
Pipeline L2 706 528 32 3

None 526402 393216 65536 34882
PLU x2 L0 526386 393216 65536 34866
PLU x2 L1 525890 393216 65536 34370

32x32 65536 PLU x2 L2 412738 311296 49152 19522
Pipeline L0 32786 12 3 3
Pipeline L1 33010 229 3 10
Pipeline L2 274434 234496 2048 5122

HLS synthesis report: Vivado HLS generates at every compilation a de-
tailed report with useful information about latency and resource consumption.
It’s possible to derive from Eq.4 that Lc equals Opimp since each FP addition is
implemented exclusively with DSPs, and both OPp and LDSP are one [7]. The
iteration time together with the number of iterations determines the number of
clock cycles needed by the implementation.

Lost cycle analysis: The execution trace depicted in Figure 2 shows how
the Analysis perspective allows to identify and quantify the different overheads
in great detail. For instance, one FP addition requires 11 clock cycles to be
completed but only 1 clock cycle can be considered useful. Extra cycles like OInit

are consumed by the inner operations needed to compute any FP operation.
OMem includes two clock cycles to load the input values and one extra cycle to
write the output. Finally, OCtrl is needed to initiate the iteration of the loop
and to check the exit condition.

Overhead model and performance estimation: Once OInit, OMem and
OCtrl have been measured they can be modelled based on the selected config-
uration of the design. Their modelling is possible by analysing the variation of
the parameters of the target configuration. The impact of the optimizations, the
source code modifications or the application scaling on Lo differs.

Performance estimation: Once the lost cycles are properly modelled, the
performance prediction for one implementation can be easily calculated (Eq.3).

The main target is the elaboration of a table such as Table 2, where the
overheads are modelled based on the explored optimizations.

Evolution of Lo based on PLU

� �� ��� ���� �����

���

���

���

���

���

���

���

��	

��

���

���

�Init

�Mem

�Ctrl

���������	
���

�
����

�

��

�
��
�

��
��
�
�

� �� ��� ����

���

���

���

���

���

���

���

��	

��

���

���

�In
�

�Mem

�Ctrl

���������	
���

�
����

�

��

�
��
�

��
��
�
�

� �� �� �� �� �� �� 	�

�

���

���

���

��

�

�
�

��������������

���

�
�
��
�

�
	

�
��
�

��

�
�

� �� �� �� �� �� �� 	�

�

���

���

���

��

�

�
�

��������������

���

�
�
��
�

�
	

�
��
�

��

�
�

Pipelining L2 Complete Unrolling L2

�I�
� �M�� �Ctrl

Fig. 3: Modelling the impact of Lo when using different optimizations.

Table 2: Summary of the overhead models based on the optimizations explored.
Opt. Loop OInit OMem OCtrl
None − (7 + 5) · IL0 · IL1 · IL2 2 · IL0 · IL1 · IL2 (IL1 · (IL2 + 2) + 2) · IL0 + 2

L0
IL0
U0

· IL1 · IL2 · (U0 · (7 + 5)) 2 · U0 · IL0
U0

· IL1 · IL2
IL0
U0

· (U0 · IL1 · (IL2 + 2) + U0 + 1) + 2

PLU L1 IL0 · IL1
U1

· IL2 · (U1 · (7 + 5)) 2 · U1 · IL0 · IL1
U1

· IL2 IL0 · (
IL1
U1

· (U1 · IL2 + U1 + 1) + 2) + 2

L2 IL0 · IL1 · IL2
U2

· (U2 · 7 + 5) 3 · IL0 · IL1 · IL2
U2

IL0 · (IL1 · (
IL2
U2

+ 3) + 2) + 2

L0 7 + 5 3 3

Pipeline L1 (7 · IL0) + 5 3 3 +
IL0
4

L2 (7 + 5) + 7 · IL0 · IL1 · (IL2 − 1) 3 · IL0 · IL1 2 + 2 · (2 · IL0) · IL1

� �� ��� ���� ����� ������ ������� ��������

��

���

���

���

���

���

���

	��

��
���������
��
����������

��
����������
��
����������

��
�����������
��
�����������

��
���������������� �
�������������

�
�������������� �
��������������

�
�������������� �
���������������

�
��������������� �
���������������������

���������	
���

�
����

�
�
�
�
�
�

� �� ���� �����

�

���

���

���

���

���

���

�
����������

�
����������

�
����������

��
�������

��
�������

��
�������

���

���������	
���

�
����

�
�
�
�
�
�

Fig. 4: Comparison of our performance predictions versus HLS reports.

5 Experimental Results

Despite we consider that our methodology can be potentially automated, many
steps still need to be manually elaborated. The main purpose of this case study
is to exemplify how our overhead analysis metric is elaborated using the infor-
mation provided by an HLS tool in a reasonable time. Our DSE is done using
Vivado HLS 2014.2 targeting an Xilinx Virtex6 lx240t FPGA at 250 MHz.

The implemented FP matrix multiplication consists of an outer-most loop
(L0), a the middle loop (L1) and an inner-most loop (L2). No register is used
in L2 to store intermediate accumulated values. Table 1 summarizes the Vivado
HLS reports when different optimizations are applied. Vivado HLS reports the
total number of clock cycles required to execute all the computations (Limp).
OPp is extracted from the number of instances reported in the resource estima-
tion. By default, Vivado HLS instantiates two dedicated cores to execute the
addition and the multiplication. Opimp represents the number of additions that
must be computed, which is simply 2 ·IL0 ·IL1 ·IL2. Consequently, Lc is obtained
from Eq. 4 and equals IL0 · IL1 · IL2, which is the minimum number of clock cy-
cles that a matrix multiplication needs when only 2 dedicated operations are
executed in parallel. The addition and the multiplication require 7 and 5 clock
cycles respectively to be initialized (OInit). OMem only demands 2 clock cycles
because the cycles dedicated to write the generated output back (IL0 · IL1) are
overlapped with OCtrl. The modelling of each overhead is summarized in Table 2.

The left figure in Figure 3 depicts the evolution of the lost cycles of a matrix
with 64× 64 elements when loop L2 is unrolled. A higher impact is obtained for

low levels of unrolling. Further levels of unrolling evidence that OInit dominates
Lo and can not be reduced beyond a certain limit. The middle and the right
figures in Figure 3 show the evolution of the overheads while increasing the
matrix size. In both cases, Lo is dominated by OInit. This result is expected
since OInit is determined by the latency of the FP operations.

Figure 4 compares our performance predictions and the HLS reported per-
formance. The left figure shows the impact of unrolling loop L2. Notice how
our performance prediction is slightly pessimist when the loop is completely
unrolled. The equations in Table 2 consider additional control, which increases
OCtrl but that is removed when the loops are completely unrolled. Nevertheless,
our predictions are extremely accurate for any level of unrolling or matrix size.
The right figure shows the same comparison when pipelining loops, where our
performance prediction achieves a high accurate estimation. Both figures depict
how our technique performs an accurate prediction, which leads to a fast DSE.

6 Conclusion

The modelling of the overheads, a concept originally designed to analyse per-
formance of parallel software, has been successfully adapted to the domain of
FPGAs. Our proposed methodology shows an accurate performance prediction
and enough flexibility to be applied for complex designs. Despite this approach
is still manually elaborated, we believe that current HLS tools can be extended
to offer such kind of performance prediction for the designer. Nevertheless, the
automation of our methodology is our main priority as future work.

References

1. Crovella, M. E., et al. ”The search for lost cycles: A new approach to parallel pro-
gram performance evaluation”, Rochester University NY Dept of computer science,
1993

2. Crovella, M. E., et al. ”Parallel performance prediction using lost cycles analysis”, In
Proceedings of the 1994 ACM/IEEE conference on Supercomputing, (pp. 600-609).
IEEE Computer Society Press, 1994

3. Park, J., et al. ”Performance and Area Modeling of Complete FPGA Designs in the
Presence of Loop Transformations”, Computers, IEEE Transactions on, 53(11), pp.
1420-1435. 2004

4. Zhong G., et al. ”Design Space Exploration of Multiple Loops on FPGAs using High
Level Synthesis”, In Computer Design (ICCD), 32nd IEEE International Conference
on (pp. 456-463). IEEE. 2014

5. Schafer, B. C., et al. ”Divide and conquer high-level synthesis design space ex-
ploration”, ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), 17(3), 29. 2012

6. da Silva, B., et al. ”Performance modeling for FPGAs: extending the roofline model
with high-level synthesis tools”, International Journal of Reconfigurable Computing,
7, 2013.

7. Xilinx. Xilinx logicore IP floating-point operator v6.1 product specification. Tech-
nical report, Xilinx, 2012.

	A Lost Cycles Analysis for Performance Prediction using High-Level Synthesis
	Introduction
	Related work
	Definition of Lost Cycles
	 Assumptions
	 Identifying the Useful Cycles
	The Lost Cycles Classification

	Proposed Methodology Overview
	Experimental Results
	Conclusion

