18 research outputs found

    13kW Advanced Electric Propulsion Flight System Development and Qualification

    Get PDF
    The next phase of robotic and human deep space exploration missions is enhanced by high performance, high power solar electric propulsion systems for large-scale science missions and cargo transportation. Aerojet Rocketdynes Advanced Electric Propulsion System (AEPS) program is completing development, qualification and delivery of five flight 13.3kW EP systems to NASA. The flight AEPS includes a magnetically-shielded, long-life Hall thruster, power processing unit (PPU), xenon flow controller (XFC), and intrasystem harnesses. The Hall thruster, originally developed and demonstrated by NASAs Glenn Research Center and the Jet Propulsion Laboratory, operates at input powers up to 12.5kW while providing a specific impulse over 2600s at an input voltage of 600V. The power processor is designed to accommodate an input voltage range of 95 to 140V, consistent with operation beyond the orbit of Mars. The integrated system is continuously throttleable between 3 and 13.3kW. The program has completed the system requirement review; the system, thruster, PPU and XFC preliminary design reviews; development of engineering models, and initial system integration testing. This paper will present the high power AEPS capabilities, overall program and design status and the latest test results for the 13.3kW flight system development and qualification program

    Adjunctive rifampicin for Staphylococcus aureus bacteraemia (ARREST): a multicentre, randomised, double-blind, placebo-controlled trial.

    Get PDF
    BACKGROUND: Staphylococcus aureus bacteraemia is a common cause of severe community-acquired and hospital-acquired infection worldwide. We tested the hypothesis that adjunctive rifampicin would reduce bacteriologically confirmed treatment failure or disease recurrence, or death, by enhancing early S aureus killing, sterilising infected foci and blood faster, and reducing risks of dissemination and metastatic infection. METHODS: In this multicentre, randomised, double-blind, placebo-controlled trial, adults (≥18 years) with S aureus bacteraemia who had received ≤96 h of active antibiotic therapy were recruited from 29 UK hospitals. Patients were randomly assigned (1:1) via a computer-generated sequential randomisation list to receive 2 weeks of adjunctive rifampicin (600 mg or 900 mg per day according to weight, oral or intravenous) versus identical placebo, together with standard antibiotic therapy. Randomisation was stratified by centre. Patients, investigators, and those caring for the patients were masked to group allocation. The primary outcome was time to bacteriologically confirmed treatment failure or disease recurrence, or death (all-cause), from randomisation to 12 weeks, adjudicated by an independent review committee masked to the treatment. Analysis was intention to treat. This trial was registered, number ISRCTN37666216, and is closed to new participants. FINDINGS: Between Dec 10, 2012, and Oct 25, 2016, 758 eligible participants were randomly assigned: 370 to rifampicin and 388 to placebo. 485 (64%) participants had community-acquired S aureus infections, and 132 (17%) had nosocomial S aureus infections. 47 (6%) had meticillin-resistant infections. 301 (40%) participants had an initial deep infection focus. Standard antibiotics were given for 29 (IQR 18-45) days; 619 (82%) participants received flucloxacillin. By week 12, 62 (17%) of participants who received rifampicin versus 71 (18%) who received placebo experienced treatment failure or disease recurrence, or died (absolute risk difference -1·4%, 95% CI -7·0 to 4·3; hazard ratio 0·96, 0·68-1·35, p=0·81). From randomisation to 12 weeks, no evidence of differences in serious (p=0·17) or grade 3-4 (p=0·36) adverse events were observed; however, 63 (17%) participants in the rifampicin group versus 39 (10%) in the placebo group had antibiotic or trial drug-modifying adverse events (p=0·004), and 24 (6%) versus six (2%) had drug interactions (p=0·0005). INTERPRETATION: Adjunctive rifampicin provided no overall benefit over standard antibiotic therapy in adults with S aureus bacteraemia. FUNDING: UK National Institute for Health Research Health Technology Assessment

    Sex differences in skeletal muscle revealed through fiber type, capillarity, and transcriptomics profiling in mice.

    No full text
    Skeletal muscle anatomy and physiology are sexually dimorphic but molecular underpinnings and muscle-specificity are not well-established. Variances in metabolic health, fitness level, sedentary behavior, genetics, and age make it difficult to discern inherent sex effects in humans. Therefore, mice under well-controlled conditions were used to determine female and male (n = 19/sex) skeletal muscle fiber type/size and capillarity in superficial and deep gastrocnemius (GA-s, GA-d), soleus (SOL), extensor digitorum longus (EDL), and plantaris (PLT), and transcriptome patterns were also determined (GA, SOL). Summed muscle weight strongly correlated with lean body mass (r2  = 0.67, p < 0.0001, both sexes). Other phenotypes were muscle-specific: e.g., capillarity (higher density, male GA-s), myofiber size (higher, male EDL), and fiber type (higher, lower type I and type II prevalences, respectively, in female SOL). There were broad differences in transcriptomics, with >6000 (GA) and >4000 (SOL) mRNAs differentially-expressed by sex; only a minority of these were shared across GA and SOL. Pathway analyses revealed differences in ribosome biology, transcription, and RNA processing. Curation of sexually dimorphic muscle transcripts shared in GA and SOL, and literature datasets from mice and humans, identified 11 genes that we propose are canonical to innate sex differences in muscle: Xist, Kdm6a, Grb10, Oas2, Rps4x (higher, females) and Ddx3y, Kdm5d, Irx3, Wwp1, Aldh1a1, Cd24a (higher, males). These genes and those with the highest "sex-biased" expression in our study do not contain estrogen-response elements (exception, Greb1), but a subset are proposed to be regulated through androgen response elements. We hypothesize that innate muscle sexual dimorphism in mice and humans is triggered and then maintained by classic X inactivation (Xist, females) and Y activation (Ddx3y, males), with coincident engagement of X encoded (Kdm6a) and Y encoded (Kdm5d) demethylase epigenetic regulators that are complemented by modulation at some regions of the genome that respond to androgen
    corecore