362 research outputs found

    Index-aware model order reduction for index-2 differential-algebraic equations

    Get PDF
    A model order reduction (MOR) method for index-2 differential-algebraic equations (DAEs) is introduced, which is based on the intrinsic differential equations contained in the starting system and on the remaining algebraic constraints. This extends the method introduced in a previous paper for index-1 DAEs. This procedure is implemented numerically and the results show numerical evidence of its robustness over the traditional methods

    Index-aware model order reduction for index-2 differential-algebraic equations

    Get PDF
    A model order reduction (MOR) method for index-2 differential-algebraic equations (DAEs) is introduced, which is based on the intrinsic differential equations contained in the starting system and on the remaining algebraic constraints. This extends the method introduced in a previous paper for index-1 DAEs. This procedure is implemented numerically and the results show numerical evidence of its robustness over the traditional methods

    Index-aware model order reduction for differential-algebraic equations

    Get PDF
    We introduce a model order reduction procedure for differential-algebraic equations, which is based on the intrinsic differential equation contained in the starting system and on the remaining algebraic constraints. We implement numerically this procedure and show numerical evidence of its validity

    Steady-state behavior of large water distribution systems: Algebraic multigrid method for the fast solution of the linear step

    Get PDF
    The Newton-based global gradient algorithm (GGA) (also known as the Todini and Pilati method) is a widely used method for computing the steady-state solution of the hydraulic variables within a water distribution system (WDS). The Newton-based computation involves solving a linear system of equations arising from the Jacobian of the WDS equations. This step is the most computationally expensive process within the GGA, particularly for large networks involving up to O(105) variables. An increasingly popular solver for large linear systems of the M-matrix class is the algebraic multigrid (AMG) method, a hierarchical-based method that uses a sequence of smaller dimensional systems to approximate the original system. This paper studies the application of AMG to the steady-state solution of WDSs through its incorporation as the linear solver within the GGA. The form of the Jacobian within the GGA is proved to be an M-matrix (under specific criteria on the pipe resistance functions), and thus able to be solved using AMG. A new interpretation of the Jacobian from the GGA is derived, enabling physically based interpretations of the AMG's automatically created hierarchy. Finally, extensive numerical studies are undertaken where it is seen that AMG outperforms the sparse Cholesky method with node reordering (the solver used in EPANET2), incomplete LU factorization (ILU), and PARDISO, which are standard iterative and direct sparse linear solvers. © 2012 American Society of Civil Engineers.A. C. Zecchin; P. Thum; A. R. Simpson; and C. Tischendor

    ICESTARS : integrated circuit/EM simulation and design technologies for advanced radio systems-on-chip

    Get PDF
    ICESTARS solved a series of critical issues in the currently available infrastructure for the design and simulation of new and highly-complex Radio Frequency (RF) front ends operating beyond 10 and up to 100 GHz. Future RF designs demand an increasing blend of analog and digital functionalities. The super and extremely high frequency (SHF, 3-30GHz, and EHF, 30-300GHz) ranges will be used to accomplish future demands for higher capacity channels. With todays frequency bands of approximately 1 to 3 GHz it is impossible to realize extremely high data transfer rates. Only a new generation of CAD and EDA tools will ensure the realization of complex nanoscale designs. It necessitates both new modeling approaches and new mathematical solution procedures for differential equations with largely differing time scales, analysis of coupled systems of DAEs (circuit equations) and PDEs (Maxwell equations for electromagnetic couplings) plus numerical simulations with mixed analog and digital signals. In ICESTARS new techniques and mathematical models working in highly integrated environments were developed to resolve this dilemma. The ICESTARS research area covered the three domains of RF design: (1) time-domain techniques, (2) frequency-domain techniques, and (3) EM analysis and coupled EM circuit analysis. The ICESTARS consortium comprised two industrial partners (NXP Semiconductors, Infineon Technologies AG), two SMEs (Magwel, AWR-APLAC) and five universities (Upper Austria, Cologne, Oulu, Wuppertal, Aalto), involving mathematicians, electronic engineers, and software engineers

    An integrated expression phenotype mapping approach defines common variants in LEP, ALOX15 and CAPNS1 associated with induction of IL-6

    Get PDF
    Interleukin-6 (IL-6) is an important modulator of inflammation and immunity whose dysregulation is associated with a number of disease states. There is evidence of significant heritability in inter-individual variation in IL6 gene expression but the genetic variants responsible for this remain to be defined. We adopted a combined approach of mapping protein and expression quantitative trait loci in peripheral blood mononuclear cells using high-density single-nucleotide polymorphism (SNP) typing for ∼2000 loci implicated in cardiovascular, metabolic and inflammatory syndromes to show that common SNP markers and haplotypes of LEP (encoding leptin) associate with a 1.7- to 2-fold higher level of lipopolysaccharide (LPS)-induced IL-6 expression. We subsequently demonstrate that basal leptin expression significantly correlates with LPS-induced IL-6 expression and that the same variants at LEP which associate with IL-6 expression are also major determinants of leptin expression in these cells. We find that variation involving two other genomic regions, CAPNS1 (encoding calpain small subunit 1) and ALOX15 (encoding arachidonate 15-lipoxygenase), show significant association with IL-6 expression. Although this may be a subset of all such trans-acting effects, we find that the same ALOX15 variants are associated with induced expression of tumour necrosis factor and IL-1beta consistent with a broader role in acute inflammation for ALOX15. This study provides evidence of novel genetic determinants of IL-6 production with implications for understanding susceptibility to inflammatory disease processes and insight into cross talk between metabolic and inflammatory pathways. It also provides proof of concept for use of an integrated expression phenotype mapping approach

    Representative Landscapes in the Forested Area of Canada

    Get PDF
    Canada is a large nation with forested ecosystems that occupy over 60% of the national land base, and knowledge of the patterns of Canada’s land cover is important to proper environmental management of this vast resource. To this end, a circa 2000 Landsat-derived land cover map of the forested ecosystems of Canada has created a new window into understanding the composition and configuration of land cover patterns in forested Canada. Strategies for summarizing such large expanses of land cover are increasingly important, as land managers work to study and preserve distinctive areas, as well as to identify representative examples of current land-cover and land-use assemblages. Meanwhile, the development of extremely efficient clustering algorithms has become increasingly important in the world of computer science, in which billions of pieces of information on the internet are continually sifted for meaning for a vast variety of applications. One recently developed clustering algorithm quickly groups large numbers of items of any type in a given data set while simultaneously selecting a representative—or “exemplar”—from each cluster. In this context, the availability of both advanced data processing methods and a nationally available set of landscape metrics presents an opportunity to identify sets of representative landscapes to better understand landscape pattern, variation, and distribution across the forested area of Canada. In this research, we first identify and provide context for a small, interpretable set of exemplar landscapes that objectively represent land cover in each of Canada’s ten forested ecozones. Then, we demonstrate how this approach can be used to identify flagship and satellite long-term study areas inside and outside protected areas in the province of Ontario. These applications aid our understanding of Canada’s forest while augmenting its management toolbox, and may signal a broad range of applications for this versatile approach
    corecore