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We introduce a model order reduction procedure for differential-algebraic equations, which
is based on the intrinsic differential equation contained in the starting system and on the
remaining algebraic constraints. We implement numerically this procedure and show numerical
evidence of its validity.
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1. Introduction

Model Order Reduction (MOR) has become a very active area of research within
numerical analysis. It aims at quickly capturing the essential features of a problem
and its solutions, so as to enable the construction of lower order models that ade-
quately describe processes. Such lower order models can then be used in subsequent
simulations, for example in an optimization procedure or in the context of inverse
modeling. In many application areas, such simulations can only be carried out if
reduced order models are used.

In the history of mathematics we see the desire to approximate a complicated
function with a simpler formulation already very early. In the year 1807 Fourier
(1768-1830) published the idea to approximate a function with a few trigonometric
terms. In linear algebra the first step in the direction of model order reduction came
from Lanczos (1893-1974). He looked for a way to reduce a matrix in tridiagonal
form [31, 32]. W.E. Arnoldi realized that a smaller matrix could be a good approx-
imation of the original matrix [22]. The ideas of Lanczos and Arnoldi were already
based on the fact that a computer was available to do the computations. The ques-
tion, therefore, was how the process of finding a smaller approximation could be
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automated. The fundamental methods in the area of Model Order Reduction were
published in the eighties and nineties of the last century. In 1981 Moore [23] pub-
lished the method of Truncated Balanced Realization, in 1984 Glover published his
famous paper on the Hankel-norm reduction [24]. In 1987 the Proper Orthogonal
Decomposition method was proposed by Sirovich [25]. All these methods were de-
veloped in the field of systems and control theory. In 1990 the first method related
to Krylov subspaces was born, in Asymptotic Waveform Evaluation [26]. How-
ever, the focus of this paper was more on finding Padé approximations rather than
Krylov spaces. Then, in 1993, Freund and Feldmann proposed Padé Via Lanczos
[27] and showed the relation between the Padé approximation and Krylov spaces.
In 1995 another fundamental method was published. The authors of [28] introduced
PRIMA, a method based on the ideas of Arnoldi, instead of those of Lanczos. This
method guarantees that the property of passivity is automatically inherited by the
reduced order models.

In more recent years much research has been done in the area of Model Order
Reduction. Consequently a large variety of methods is available. Some are tailored
to specific applications, others are more general. An example of the latter is SPRIM
[29] which attempts to construct reduced order models that mimic the structure of
the original problem. This is especially important if the problem on hand contains
different types of variables. Another important area of research is MOR for coupled
problems, but here no breakthroughs have been obtained to date.

In this paper, we concentrate on another general type of problem. In many appli-
cation areas, models are described by a system of differential-algebraic equations, in
the area of model order reduction referred to as descriptor systems. Such problems
can be cast into the form of a state-space system with a singular coefficient matrix
multiplying the time derivative. Thus, we have a differential-algebraic equation
(DAE).

There are several index concepts which measure how a DAE is far from an
ODE. Here we mention the tractability index, which is related to the number of
derivatives of the input which enter the solution. In principle, if the matrix pencil
of a DAE is regular, it is possible to use conventional MOR techniques to obtain
reduced order models, which are generally ODEs. However, as far as their numerical
treatment is concerned, the reduced models may be close to higher index models,
that is to DAEs. Thus the numerical solution of the reduced models might be
computationally expensive, or even not feasible. This problem is very pronounced
for system with index higher than 1, but it may occur even if the index of the
problem does not exceed 1, as shown by Example 5.5 in Section 5.

To solve such problems in a reliable way, we developed the idea of using the
so-called März projectors [15] to split the DAE system into a system of ODE and a
system of algebraic equations. Then, conventional MOR techniques can be used to
reduce the ODE system. We show that the reduction of the ODE system induced
a reduction also of the algebraic equations.

We notice that conventional MOR methods do not work for the algebraic equa-
tions, and alternative methods must be used. In [30] a new method for the special
case of resistor networks has been described, and one could imagine that simi-
lar techniques, based on graph theoretical methods, can be used for the resulting
algebraic systems. In this paper, however, we will use a different approach.

In order to describe the ideas in detail, and show the merits of index-aware model
order reduction (IMOR), this paper develops the theory and shows applications
only for the index-1 case. In a forthcoming paper, we will treat the higher-index
cases, for which the ideas are similar, but the analysis is more involved.

The paper is organized as follows. In Section 2 we present the main problem. In
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Section 3 we briefly recall the definition of tractability index, and the decomposi-
tion of DAEs in differential and algebraic equations, by using März projectors. In
particular, we specialize the splitting to index-1 DAEs and introduce an alternative
compact splitting. In Section 4 we recall some traditional MOR methods and in-
troduce index-aware MOR (IMOR) methods. For the sake of simplicity we confine
our discussion to Krylov-based MOR methods, such as Arnoldi process, and in a
final subsection we compare MOR and IMOR methods. In Section 5 we present
some numerical examples, divided in small examples and industrial examples. The
small examples are used to illustrate the idea of the method, and to show that the
splitting of the DAE in differential and algebraic equations is beneficial also for the
numerical solution of the system. The industrial examples show the feasibility of
the method for real-life applications. The paper is concluded by some final remarks,
in Section 6.

2. Statement of the problem

We consider the linear time-invariant control system:

Ex′ = Ax+ Bu, (1a)

y = CTx, (1b)

with constant matrices E,A ∈ Rn,n, B ∈ Rn,m, C ∈ Rn,` and vectors x ∈ Rn,
u ∈ Rm, y ∈ R`. In (1), n is the state-space dimension, and m and ` are the
number of inputs and outputs, respectively. The unknown x depends on the time
t, and the prime denotes time derivative. The vector u, also depending on time,
is the input data, while y is the desired output data and C is the control output
matrix. The system is supplemented with initial data

x(0) = x0. (2)

We assume that both B and C have maximal rank. Usually ` and m are required
to be (much) smaller than n, in this case we have rank B = m, rank C = `. In order
to have uniqueness of solution, we assume that the matrix pencil (E,A) is regular,
that is det(Es−A) ∈ R(s) \ {0}. If the matrix E is non-singular the system is an
ordinary differential equation (ODE) otherwise it is a differential algebraic equation
(DAE). In this paper, we consider the latter case. Thus the initial data x0 in (2)
must be consistent, since there are constraints on the possible initial conditions
that can be imposed on the solutions of equation (1a).

The main goal of MOR is to find a smaller system than (1), which produces an
input-output relation similar to the original system. There are many ways to ap-
proach this problem. The simplest way makes use of a projection from the solution
space Rn to a subspace V with sufficiently small dimension nr < n.

If we denote by V ∈ Rn,nr the matrix of an orthonormal basis of V, that is,
VTV = Inr

, then we wish to approximate the solution x by means of the vector
Vxr ∈ V, with xr ∈ Rnr . In other words we are discarding the components of x
which lie outside V, and we are identifying the projection by means of its coor-
dinates with respect to a basis. We replace the original system for x ∈ Rn, with
output y ∈ R`, with the reduced system for xr ∈ Rnr , with output yr ∈ R`,

Erx
′
r = Arxr + Bru, (3a)

yr = CT
r xr, (3b)
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with matrices Er = VTEV, Ar = VTAV ∈ Rnr,nr , Br = VTB ∈ Rnr,m, and Cr =
VTC ∈ Rnr,`. In this framework, a MOR method amounts to finding a suitable
subspace V and a projector on it, such that the approximation error ‖y − yr‖ is
small in a suitable norm.

In addition to providing a small approximation error, the main goal of MOR
is to find reduced models which preserve some relevant physical properties of the
original system (1), such as stability and passivity (see [19]), or the first moments
of the transfer function (see Section 4).

In this paper we present a MOR method which preserves another important
property of the original system, that is, the index of the system. There are many
index concepts, we consider the tractability index since it can be computed numer-
ically, as discussed in the next section. Roughly speaking, the tractability index
gives a measure of how far a DAE is from an ODE, in terms of the derivatives
of the input which enters the output. One might expect that this concept can be
neglected, since in principle the most common MOR methods based on projection
can be applied to a problem of the form (1), provided the matrix pencil (E,A)
is regular, irrespective of its index. In practice the situation is very different. The
reduced system provided by methods like PRIMA is an ODE, but this ODE may
generally be close to a DAE, depending on the choice of the matrices B and C.
Thus, the numerical solution may be very unstable, and sometime it might fail, even
for reduced systems originating from index-1 systems, as illustrated in Example 5.5
in Section 5.

3. Index concept and decomposition of DAEs

In this section we review briefly the concept of tractability index of the system (1a).
In particular, in the first subsection we present a decoupling of the system which
is based on appropriate projectors. In the second subsection we apply the general
theory to the decomposition of index-1 systems. Finally, we present a modified
decomposition for index-1 systems, which is more practical for applications.

3.1. Tractability index of DAEs

In this subsection we introduce the concept of tractability index of the system (1a).
This concept was introduced by März, and this section is based on the material
contained in [15, 16].

If the matrix E is non-singular the system is an ODE, and we say that it has
tractability index 0. In the rest of the paper, we assume that the matrix E is
singular, so that the system is a DAE. To define the tractability index we introduce
a sequence of matrices Ek, Ak, k ≥ 0. For k = 0 we set

E0 := E, A0 := A.

We introduce the projector Q0 onto ker E0, and its complementary projector P0

characterized by

E0Q0 = 0, Q2
0 = Q0, Q0 + P0 = I. (4)

We then introduce, for k = 1, the new matrices

E1 := E0 −A0Q0, A1 := A0P0.
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By construction, we can rewrite (1a) in the equivalent form:

E1(P0x
′ + Q0x) = A1x+ Bu. (5)

If the matrix E1 is non-singular, the procedure is terminated and we say that the
system (1a) has tractability index 1, i.e., it is an index-1 system, otherwise the
process continues till we obtain a non-singular matrix.

This procedure can be iterated by induction, as follows. Let k > 1. For j =
0, 1, . . . , k − 1, assume to know the matrices Ej , Aj , with Ej singular, and the
projectors Qj , Pj = I − Qj , where Qj is a projector onto ker Ej , satisfying the
additional condition

QjQi = 0, 0 ≤ i < j. (6)

This condition is crucial to ensure that the relevant products of P ’s and Q’s are
also projectors. Then, for j = k we define the matrices

Ek := Ek−1 −Ak−1Qk−1, Ak := Ak−1Pk−1,

and it is possible to prove that the following equivalent form of equation (1a) holds:

Ek(Pk−1 · · ·P0x
′ + Q0x+ · · ·+ Qk−1x) = Akx+ Bu. (7)

If Ek is invertible and Ej is singular for 0 ≤ j < k, then system (1a) is said to have
tractability index k. It is well-known that a linear DAE with constant coefficients
has tractability index k if and only if it has the Kronecker index k (see [20]). In the
context of DAEs including over- and underdetermined systems, a proof can also
be found in [21]. Note the the projectors that satisfy condition (6) exist in practice
and can be computed numerically (cf. [21]).

This procedure leads to a well-defined index concept. In particular, after inverting
the matrix Ek, we can project the resulting system to find an intrinsic differential
equation for xP := P0P1 . . .Pk−1x, which we call the “differential component”
of x, and algebraic equations for xQ,0 := Q0x, xQ,1 := P0Q1x, . . . , xQ,k−1 :=
P0 · · ·Pk−2Qk−1x, which we call the “algebraic components” of x. The algebraic
equations are to be solved iteratively in terms of xP , starting from xQ,k−1. In the
expression of xQ,k−2 will appear a time derivative of xQ,k−1, and thus of xP and
u. At each step of the iteration, a new time derivative will appear. So, in total, the
solution of an index-k system will contain k − 1 derivatives of u.

3.2. Decomposition of index-1 systems

In this subsection, we concentrate on index-1 systems. Assume system (1a) has
tractability index 1, i.e k = 1, then equation (7) simplifies to:

P0x
′ + Q0x = E−1

1 (A1x+ Bu). (8)

Since we have the decomposition of the identity I = P0+Q0, and the projectors P0,
Q0 are mutually orthogonal, then equation (8) is equivalent to the two equations
obtained after left-multiplication by P0 and Q0:

P0x
′ = P0E

−1
1 (A1x+ Bu),

Q0x = Q0E
−1
1 (A1x+ Bu).
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The first equation is an ordinary differential equation for xP := P0x, the second is
an algebraic equation which expresses xQ := Q0x in terms of xP . We call xP the
differential component of x, and xQ the algebraic component of x. The previous
equations can be written as:

x′P = APxP + BPu, (9)

xQ = AQxP + BQu, (10)

with

AP := P0E
−1
1 AP0, BP := P0E

−1
1 B,

AQ := Q0E
−1
1 AP0, BQ := Q0E

−1
1 B.

This decomposition shows that we can only impose initial data on xP . In fact, if
we write x(0) = xP (0) + xQ(0), we can recover the algebraic part of the initial
data by consistency with (10), that is,

xQ(0) = AQxP (0) + BQu(0). (11)

Both equations (9) and (10) are formally defined on the same space Rn, since we
have xP ,xQ ∈ Rn. Thus, the resulting system is of dimension 2n. If the tractability
index is equal to k, the decoupled system will then be of order (k + 1)n. However,
in all cases, the total rank will always be n. This is one of the limitation of März
decomposition. In order to make the computational and model order reduction pro-
cedures more efficient, we propose a new way of decoupling index-1 systems using
basis column matrices of projector P0 and Q0 as discussed in the next subsection.

3.3. Modified decomposition of index-1 systems

Let us introduce nq = dim(ker E), np = n − nq, and consider a basis
{p1, . . . ,pnp

,q1, . . . ,qnq
} in Rn made of nq independent vectors qi ∈ kerE and

np independent vectors pj in the complementary subspace. Then, we can form the
matrices p :=

[
p1 . . . pnp

]
∈ Rn,np , q :=

[
q1 . . . qnq

]
∈ Rn,nq . We have

P0p = p, P0q = 0, Q0p = 0, Q0q = q. (12)

We can expand x with respect to the new basis, obtaining

x = pξp + qξq, ξp ∈ Rnp , ξq ∈ Rnq ,

which implies

xP = pξp, xQ = qξq. (13)

By construction,
[
p q
]

is invertible, and let

[
pT∗
qT∗

]
be its inverse. Then we have

pT∗ p = I, pT∗ q = 0, qT∗ p = 0, qT∗ q = I, (14)
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which gives

ξp = pT∗ xP = pT∗ x, ξq = qT∗ xQ = qT∗ x.

Substituting equation (13) into system (9)-(10), we obtain :

ξ′p = Apξp + Bpu, (15a)

ξq = Aqξp + Bqu, (15b)

with

Ap := pT∗AP p ≡ pT∗E−1
1 Ap, Bp := pT∗BP ≡ pT∗E−1

1 B,

Aq := qT∗AQp ≡ qT∗E−1
1 Ap, Bq := qT∗BQ ≡ qT∗E−1

1 B,

Now the decoupled system (15a)–(15b) has the same dimension as the original
DAE system.

For comparison with system (1a), we we can rewrite system (15) in the form:

Ẽξ′ = Ãξ + B̃u, (16)

where

Ẽ :=

[
I 0
0 0

]
, Ã :=

[
Ap 0
Aq −I

]
∈ Rn,n, B̃ :=

[
Bp

Bq

]
∈ Rn,m,

and ξ :=

[
ξp
ξq

]
∈ Rn.

This form reveals the interconnection with the original structure of (1a). In fact, if
we use in (16) the identities ξp = pT∗ x, ξq = qT∗ x, and the expressions of Bp, Bq,
we find:

Ẽ

[
pT∗
qT∗

]
x′ = Ã

[
pT∗
qT∗

]
x+

[
pT∗
qT∗

]
E−1

1 Bu.

Multiplying from the left by E1

[
p q
]
, we obtain

E1

[
p q
]
Ẽ

[
pT∗
qT∗

]
x′ = E1

[
p q
]
Ã

[
pT∗
qT∗

]
x+ Bu,

which, by comparison with (1a), leads to the identities

(E,A) = E1W(Ẽ, Ã)W−1, B = E1WB̃, (17)

where W =
[
p q
]
. This shows that systems (16) and (1a) are equivalent, although

the former is easier to solve than the latter, and their solutions are related by

ξ =

[
pT∗
qT∗

]
x ⇐⇒ x =

[
p q
]
ξ

Moreover, identity (17) leads to the following theorem.
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Theorem 3.1 : The set of the finite eigenvalues of matrix pencil (E,A) is equal
to the set of eigenvalues of Ap,i.e. σf (E,A) = σ(Ap).

This theorem can easily be proved using the fact that det (λE −A) = 0 if and
only if det (λẼ − Ã) = 0, since the two matrix pencils are related by invertible
matrices. Then, it is simple to see that det (λẼ− Ã) = (−1)nqdet (λI−Ap), thus
the thesis.

This theorem implies that the dimension of the differential part of the DAE
system is equal to the length of the spectrum of the finite eigenvalues of the matrix
pencil (E,A). This will be advantageous in model reduction since the decoupled
system also preserves the stability of the DAE system (1). We note that the number
of finite eigenvalues of matrix pencil (E,A) is equal to the rank of E for index 1
systems.

Someone may wonder whether the numerical computation of projectors Q0 and
P0 with their respective basis are feasible in the case of large sparse systems arising
in actual real-world applications. Actually, the numerical computation of these
projectors is feasible and can be done using the sparse LU decomposition- base
routine from [17], called LUQ. This routine decomposes a singular sparse matrix
E, into

ET
0 = L0

[
U0 0
0 0

]
R0

where L0,R0 ∈ Rn×n are nonsingular matrices, U0 ∈ Rr×r is a nonsingular upper
triangular matrix, where r is the rank of E. The algorithm of this routine is well
discussed in [18]. Using this routine as a starting step and using the fact that the
nullspace of E0 can be computed via its left nullspace of ET

0, in [18], a procedure
computing projector Q0 onto the nullspace of E0 is discussed. This same procedure
can be used to compute the basis column matrices q and p for projectors Q0 and P0

efficiently. We note that this approach cannot be used on dense matrices, instead
we need to use the singular value decomposition (SVD) based methods.

4. Model order reduction

Model order reduction aims at finding a smaller system which preserves certain
properties of the original system. In this section we review one of the most com-
monly used MOR method, that is, the Arnoldi process. Recalling the procedure
outlined in section 2, this method amounts to choosing a subspace V such that
the output of the projected system is close to the output of the original system,
and this subspace is chosen by requiring that the first moments of the transfer
function be preserved. Then we introduce the index-aware MOR method for an
index-1 control problem of the form (1), which reaches the same goal by using a
modified approach with exploits the simplification offered by the decomposition in
differential and algebraic parts, described in the previous section.

4.1. Traditional MOR

MOR techniques based on Krylov subspace methods aim at generating a reduced
system which preserves a given number of moments of the transfer function. This
is done by using projection methods, as briefly recalled in section 2. There is a
large variety of projection methods, in the following we will restrict ourselves to
Arnoldi process.
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To define the transfer function of the control problem (1), we take its Laplace
transform. After simplifying, we can find an explicit expression for the Laplace
transform of the output y(t), denoted by Y (s), in terms of the Laplace transform
of the input u(t), denoted by U(s):

Y (s) = H(s)U(s) + G(s)x0. (18)

The matrix function H(s) := CT (sE − A)−1B, which relates the transforms of
the input and the output, is called transfer function while the function G(s) :=
CT (sE −A)−1E relates the output to the initial data. We are interested only in
the input-output relation, so we can assume x0 = 0. This assumption cannot be
used for systems with higher tractability index.

The relation (18) is valid for any s ∈ C if and only if s0E−A is regular. Let us
assume that s0 is such a real number, which exists if the matrix pencil (E,A) is
regular. Then, for the transfer function H(s) we have the identity:

H(s) = CT (I + (s− s0)M)−1R,

where M := (s0E −A)−1E, R := (s0E −A)−1B. From the above identity, we
find the formal expansion

H(s) =

∞∑
k=0

(−1)kCTMkR(s− s0)k =:

∞∑
k=0

h(k)(s− s0)k.

This expansion defines the moments h(k), k = 0, 1, . . . of the transfer function H(s)
around s = s0.

We wish to find a reduction procedure which preserves the first r moments of
the transfer function. To do so, we consider the order-r Krylov subspace generated
by M and R, that is, Kr(M,R) = span{R,MR, . . . ,Mr−1R}, r ≤ n, and denote
by V ∈ Rn,rm the matrix of an orthonormal basis for Kr, so that VTV = I ∈
Rrm,rm. Here we are assuming that R has maximum rank m < n. Then we seek
an approximate solution of the form x = Vxr. Substituting it into (1) leads to the
reduced model (3), with Er = VTEV, Ar = VTAV, Br = VTB, Cr = VTC. The
transfer function for this reduced problem is

Hr(s) = CT
r (sEr −Ar)

−1Br,

and it can be proven that its moments around s = s0 coincide with the moments
of H(s) up to order r and 2r using PRIMA and SPRIM methods, respectively,
to construct the orthonormal matrix V [28, 29]. Thus the number of matching
moments depends on the way orthonormal matrix V is constructed even though
the theory may be the same.

We have to note that, although in principle this procedure can always be used on
DAEs with arbitrary index, provided the matrix pencil (E,A) is regular, obtaining
a good matching for the moments of the transfer function, nevertheless the resulting
reduced models may be difficult to solve or lead to wrong solutions. For this reason
we propose a new method in the next subsection.

4.2. Index-aware MOR

We propose a new method for DAEs which we call the index-aware MOR (IMOR).
In this method instead of applying model order reduction on system (1) directly,
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we apply it on its decoupled system. Then the conventional methods can be used
to reduce the differential part and we develop new techniques to reduce the alge-
braic parts. Since in this paper, we concentrate on index-1 systems, thus using the
decoupled system (8) and the control output equation (1b), we obtain :

ξ′p = Apξp + Bpu, (19a)

ξq = Aqξp + Bqu, (19b)

y = CT
p ξp + CT

q ξq, (19c)

where Ap ∈ Rnp,np , Bp ∈ Rnp,m, Aq ∈ Rnq,np , Bq ∈ Rnq,m have been defined in the
previous section, and Cp = pTC ∈ Rnp,`, Cq = qTC ∈ Rnq,`.
System (19) can be written in the descriptor form:

Ẽξ′ = Ãξ + B̃u, (20a)

y = C̃T ξ, (20b)

where C̃ :=
[
Cp Cq

]T ∈ Rn,` and the rest of the matrices are as defined in equation
(16). We note that the output solution y of system (1) and (20) must coincide
although their state space x and ξ may be different. We use the form (20) only for
analysis and comparison. Thus to derive the index-aware MOR , we use the form
(19) as follows:

We propose an approach to the decoupled control problem (19) which can lead
to a natural generalization in the case of higher order systems. We achieve this by
first rewriting (19) in two steps, strictly separating the differential and algebraic
variables:

ξ′p = Apξp + Bpu, (21a)

yp = CT
p ξp, (21b)

and

ξq = Aqξp + Bqu, (22a)

yq = CT
q ξq. (22b)

The output equation is reconstructed by taking :

y = yp + yq. (23)

Observe that if Cq = 0 the DAE system can be reduced to a differential equation
(21) of dimension np even before applying the actual reduction procedure. If Cq 6=
0, we proceed as follows: In this approach, the transfer function is decomposed as
the sum of the transfer function of the control problem (21) and a modification
due to the algebraic component, computed by means of (22).

The order of the control problem (21) can be reduced by means of any convec-
tional MOR methods. For instance we can apply an Arnoldi process, based on the
Krylov subspace

Kr(Mp,Rp) := span {Rp,MpRp, . . . ,M
r−1
p Rp}, r ≤ np, (24)
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where Mp := (s0I−Ap)
−1 and Rp := (s0I−Ap)

−1Bp. We denote by Vp ∈ Rnp,rm

the matrix of an orthonormal basis for Kr(Mp,Rp), so that VT
p Vp = I ∈ Rrm,rm.

Then we seek an approximate solution of the form ξp = Vpξ̃p, that is, we replace
(21) with

ξ̃
′
p = Ãpξ̃p + B̃pu, (25a)

ỹp = C̃T
p ξ̃p, (25b)

where Ãp := VT
p ApVp, B̃p := VT

p Bp, C̃p := VT
p Cp.

The reduction procedure for the differential variables induces a reduction proce-
dure for the algebraic variables. To see this, we perform the algebraic step (22) by
using the reduced expression for the differential variable,

ξ∗q = AqVpξ̃p + Bqu,

where ξ∗q is the approximation of ξq induced by the reduction of ξp. This relation
shows that ξ∗q lives in the subspace

Vq := span {Bq,AqVp} = span {Bq}+ AqKr(Mp,Rp). (26)

We denote by τ the dimension of Vq, and by Vq ∈ Rnq,τ the matrix of an orthonor-
mal basis for Vq, so that VT

q Vq = I ∈ Rτ,τ . Then we can represent the algebraic

solution in the form ξ∗q = Vqξ̃q, that is, we can replace (22) with

ξ̃q = Ãqξ̃p + B̃qu, (27a)

ỹq = C̃T
q ξ̃q, (27b)

with Ãq := VT
q AqVp, B̃q := VT

q Bq, C̃q := VT
q Cq.

Thus, combining equation (25) and (27) leads to a reduced model given by:

ξ̃
′
p = Ãpξ̃p + B̃pu, (28a)

ξ̃q = Ãqξ̃p + B̃qu, (28b)

ỹ = C̃T
p ξ̃p + C̃T

q ξ̃q. (28c)

The reduced system (28) can also be written in descriptor form:

Ẽrξ̃
′
r = Ãrξ̃r + B̃ru, (29a)

yr = C̃T
r ξ̃r, (29b)

where

Ẽr :=

[
I 0
0 0

]
, Ãr :=

[
Ãp 0

Ãq −I

]
∈ Rrm+τ,rm+τ , B̃r :=

[
B̃p

B̃q

]
∈ Rrm+τ,m,

C̃r :=

[
C̃p

C̃q

]
∈ Rrm+τ,`, and ξ̃r :=

[
ξ̃p
ξ̃q

]
∈ Rrm+τ .
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Hence system (29) is an index-ware MOR (IMOR) model for system (1). This
model will always preserves the index of DAE system. We observe that the reduced
model (29) can also be obtained by substituting ξ = Vξ̃r, where the block diagonal

orthornomal matrix V =

[
Vp 0
0 Vq

]
into equation (20). Thus the transfer function

of the reduced system can be written as:

H̃(s) = C̃T
r(sẼr − Ãr)

−1B̃r.

We note that the IMOR method always preserves the index of the system (1).
This method also preserves stability and passivity of the system (1) if and only if
the conventional MOR method used to reduce the differential part preserves these
properties.

Remark 1 : By construction, we have rm ≤ np, and τ ≤ min{(r + 1)m,nq}, so
the dimension of IMOR model is less than or equal to np + nq = n.

4.3. Comparison between traditional and IMOR method

In this subsection we compare the traditional and the index-aware MOR. First,
we want to show that the index-aware MOR preserves the desired moments of
the original transfer function. To clarify the application of the MOR technique to
the decomposed control problem (21)-(22), we compute the transfer function. Of
course, by construction, the final transfer function must coincide with the transfer
function of the original problem.

Taking the Laplace transform of the two-step formulation (21)-(22), we obtain:

sΞp(s) = ApΞp(s) + BpU(s), (30a)

Yp(s) = CT
p Ξp(s), (30b)

and

Ξq(s) = AqΞp(s) + BqU(s), (31a)

Yq(s) = CT
q Ξq(s), (31b)

where Ξp(s), Ξq(s) are the Laplace transforms of ξp, ξq, respectively. Also taking
the Laplace transform of equation (23) and substituting equations (30) and (31),
we obtain:

Y (s) = Yp(s) + Yq(s),

where Yp(s), Yq(s) are the Laplace transforms of yp, yq, respectively. The resulting
decomposed input-output relations of the differential and algebraic part are:

Yp(s) = CT
p (sI−Ap)

−1BpU(s),

Yq(s) = CT
q [Aq(sI−Ap)

−1Bp + Bq]U(s),

The total transfer function is also decompose as

H(s) = Hp(s) + Hq(s), (32)
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where

Hp(s) := CT
p (sI−Ap)

−1Bp, and

Hq(s) := CT
q [Aq(sI−Ap)

−1Bp + Bq],

are the transfer functions of the differential component (21) and algebraic compo-
nent (22), respectively. We note that this transfer function (32) also coincides with
the transfer function obtained using system matrices in equation (20).

After performing the reduction of the order of the differential variable, the
Arnoldi process preserves the first 2r moments of the differential component of
transfer function, Hp(s). The underlying Krylov subspaces depend only on the
matrix pencil (sI −Ap)

−1Bp, which appears also in the proper part of the alge-
braic component of the transfer function, Hq(s). Since the improper part of the
transfer function is constant, it is also preserved. Thus, the first 2r moments of the
original transfer function are preserved. This implies the number of matching mo-
ments of the IMOR method depend on the method used to reduce the differential
part.

It is interesting to comment on the role of the matrices Aq and Bq. The first
matrix does not affect directly the reduction procedure, it only “transfers” the
reduction from the differential to the algebraic component of the solution. Instead,
the matrix Bq is responsible for the improper part of the total transfer function,
so it contains the relevant effect of the algebraic variables in the original control
problem.

To compare the Krylov subspaces used in the traditional and index-aware MOR
procedure, we use (20). We also use the basis column matrices and their respective
inverse, and the matrix chain as defined in Section 3.2. The matrices E, A, B, are
related to the matrices Ẽ, Ã, B̃ by the identity (17). Then, the matrices M and
R, used to generate the Krylov subspaces of the traditional MOR in Section 4.1,
can then be written as follows:

M = W(s0Ẽ− Ã)−1ẼW−1, R = W(s0Ẽ− Ã)−1B̃. (33)

Recalling the expression of Ẽ, Ã, B̃, and the definition of the matrices Mp and
Rp, used to generate the Krylov subspaces of the IMOR method in the previous
section, Equation (33) simplifies to:

M = W

[
Mp 0

AqMp 0

]
W−1, R = W

[
Rp

AqRp + Bq

]
.

Recalling that W =
[
p q
]
, we obtain:

R = (p + qAq)Rp + qBq, MiR = (p + qAq)M
i
pRp, i = 1, 2, . . . .

Thus, we have:

pT∗Kr(M,R) = Kr(Mp,Rp),

qT∗Kr(M,R) = span {Bq + AqRp,AqMpRp, . . . ,AqM
r−1
p Rp},

⊂ span {Bq}+ AqKr(Mp,Rp) = Vq.

The above formulas show the relationship between the Krylov subspaces used in
the traditional MOR and IMOR methods. We observe that the algebraic reduction
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procedure used in the IMOR has no direct counterpart in the traditional MOR
procedure. Hence the two MOR methods do not coincide.

5. Numerical aspects and examples

In this section, we present some examples of index-1 systems using the split ap-
proach discussed in Section 3.3. We also show the robustness of the proposed IMOR
method over the traditional MOR method.

5.1. Examples on decoupling of index-1 systems

In Example (5.1) and (5.2), we illustrate the decoupling of index-1 DAE systems
using projectors as discussed in Section 3.3.

Example 5.1 Consider a DAE system with system matrices :

E =

 C1 + C2 −C1 − C2 0
−C1 − C2 C1 + C2 0

0 0 0

 , A =

−G1 −G2 G2 0
G2 −G2 1
0 −1 0

 , B =

 0
0
−1

 .
This DAE model is derived from a circuit network in Figure 1, using modified nodal
analysis. In Figure 1, Ci, i = 1, 2, is the capacitance of the corresponding capacitor
and Gi = 1

Ri
, i = 1, 2, is the resistivity of the corresponding resistor with resistance

Ri . The derivation of DAE systems from circuits is beyond the scope of this paper

G1

G2

C1

C2 Vs

−iv
e1 e2

Figure 1. Simple RC circuit network

but we are just interested in the system matrices. We need to find the unknowns
x = (e1, e2, iv)

T given the input function u = Vs. This DAE system is solvable since
the polynomial det(λE−A) = λ(C1 +C2) +G1 +G2 does not vanish. The system
is stable with only one finite eigenvalue given by σf (E,A) = {−G1+G2

C1+C2
}. Thus the

differential part of the decoupled system must also have one differential equation
and stable.

In order to apply the proposed approach we need to decompose the DAE system
into differential and algebraic parts. We set E0 = E and A0 = A, then

E1 = E0 −A0Q0, (34)

where Q0 is the projector onto kerE0 and P0 = I − Q0. We can choose the
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projectors :

Q0 =


1
2

1
2 0

1
2

1
2 0

0 0 1

 , P0 =


1
2 −

1
2 0

−1
2

1
2 0

0 0 0

 .
Using (34) we have,

E1 =


2C1+2C2+G1

2
G1−2C2−2C1

2 0

−C1 − C2 C1 + C2 −1
1
2

1
2 0

 .
We can see that E1 is nonsingular and its inverse is given by

E−1
1 =


1

2(C1+C2) 0 2C1+2C2−G1

2(C1+C2)

− 1
2(C1+C2) 0 2C1+2C2−G1

2(C1+C2)

−1 −1 G1

 .
Thus, this is an index-1 system. The bases of projector Q0 and P0 are given by

q =

1 0
1 0
0 1

 , p =

 1
−1

0

 , (35)

and their corresponding inverses are given by

qT∗ =

[
1
2

1
2 0

0 0 1

]
, pT∗ =

[
1
2 −

1
2 0
]
. (36)

The matrices of the decoupled system are

Ap = pT∗E−1
1 Ap = −G1 +G2

C1 + C2
, Bp = pT∗E

−1
1 B =

G1

2(C1 + C2)
,

Aq = qT∗E−1
1 Ap =

[
1

2G1

]
, Bq = qT∗E−1

1 B =

[
−1
−G1

]
. (37)

Thus substituting (37) into (15a)-(15b), we obtain the decoupled system,

ξ′P = −G1 +G2

C1 + C2
ξP +

G1

2(C1 + C2)
u, (38)

ξQ =

[
1

2G1

]
ξP −

[
1
G1

]
u. (39)

We can observe that the decoupled system has one only differential equation and
two algebraic equations as expected. We can also see that σf (E,A) = σ(Ap),
thus this example satisfies Theorem 3.1 as expected and the number of differential
equations is equal to the number of finite eigenvalues of the matrix pencil (E,A).
If we apply initial condition ξP (0) = pT∗ x(0), where x(0) is a consistent initial
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condition, we obtain the desired solution using the formula :

x = pξP + qξQ,

=

 1
−1

0

 ξP +

1 0
1 0
0 1

 ξQ. (40)

Hence the analytic solution of the DAE system can be written as,

x =

e1

e2

iv

 =

 2ξP − u
−u

2G1ξP −G1u

 , (41)

where

ξP = e
−G1+G2

C1+C2
t
ξP (0) +

G1

2(C1 + C2)
e
−G1+G2

C1+C2
t
∫ t

0
e

G1+G2
C1+C2

τ
u(τ) dτ.

Example 5.2 In this example, we consider DAE system with matrices:

E =

[
I I
0 0

]
∈ R2k×2k, A = I ∈ R2k×2k, B = 12k ∈ R2k, (42)

where 1 is a column vector of ones. This system is solvable for all k ∈ N since
the polynomial det(λE−A) = (λ− 1)k does not vanish. We see that this system
is unstable and its matrix pencil (E,A) has a finite eigenvalue λ = 1 with multi-
plicity k. Thus we expect the differential part of its decoupled system to have at

most dimension k and also to be unstable. Introducing x =
[
x1 x2

]T
, the initial

condition, x(0) =
[
x1(0) x2(0)

]T
is consistent if x1(0) is chosen arbitrarily, while

x2(0) has to satisfy x2(0) = −1ku(0).
In order to solve this example, we need to first decompose the DAE system into

the differential and algebraic equations. Setting E0 = E and A0 = A, then

E1 = E0 −A0Q0, (43)

where Q0 is the projector onto kerE0 and P0 = I − Q0. We can choose the
projectors :

Q0 =

[
0 −I
0 I

]
, P0 =

[
I I
0 0

]
.

Using (43) we have,

E1 =

[
I 2I
0 −I

]
.

We can see that E1 is nonsingular and its inverse is given by E−1
1 = E1. Thus, this

system is also an index 1 system. The basis column matrices of projector Q0 and
P0 are given by

q =

[
−I

I

]
, p =

[
I
0

]
. (44)
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and the corresponding inverses are given by

qT∗ =
[
0 I
]
, pT∗ =

[
I I
]
. (45)

Then, the matrices of the decoupled system are given by:

Ap = pT∗E−1
1 Ap = I, Aq = qT∗E−1

1 Ap = 0,

Bp = pT∗E−1
1 B = 21k, Bq = qT∗E−1

1 B = −1k. (46)

Thus substituting (46) into (15a)-(15b), we obtain the decoupled system :

ξ′P = ξP + 21ku, (47)

ξQ = −1ku. (48)

We can see that σf (E,A) = σ(Ap), thus this example satisfies Theorem 3.1 and
the number of differential equations is equal to the number of finite eigenvalues of
the matrix pencil (E,A). Regarding (47), the analytic solution of the differential
part is given by

ξP (t) = etξP (0) + et21k

∫ t

0
e−τu(τ) dτ.

Thus, using the formula x = pξp + qξq , we obtain the desired solution of the DAE
system (42) given by,

x =

[
etξP (0) + 1ku+ et21k

∫ t
0 e
−τu(τ) dτ

−1ku

]
, (49)

where ξP (0) = pT∗ x(0) = x1(0)− 1ku(0).

Hence, we can solve both small and large index 1 systems by first decoupling the
DAE system into differential and algebraic equations using projectors.

5.2. MOR examples

In this section, we compare the traditional MOR method with our IMOR method
numerically. There exist many traditional MOR techniques but we shall re-
strict ourselves on the PRIMA method. The PRIMA method uses the matri-
ces (E,A,B,C) of the dynamical system (1) and then obtain reduced model
(Er,Ar,Br,Cr) called the PRIMA models, while the IMOR method reduces the
matrices (E,A,B,C) indirectly by reducing the decoupled system instead. As a
result we obtain reduced model (Ẽr, Ãr, B̃r, C̃r), which we call the IMOR model.
We have to note that, we used the PRIMA method to reduce the differential part
of the decoupled system but also other methods can be used. The comparison be-
tween PRIMA models and index aware models will be done using both small and
large scale examples below. For comparison purposes we reduce the system to the
same dimension.
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5.2.1. Small example

Example 5.3 Consider an index-1 Linear time invariant (LTI) dynamical system
of dimension 5 with system matrices shown below:

E =


0 0 0 0 0

0 0 0 0 0

0 0 1
2 −

1
2 0

0 0 −1
2

3
2 0

0 0 0 0 0

 , A =


−1

3
1
3 0 0 1

1
3 −

5
6

1
2 0 0

0 1
2 −

1
2 0 0

0 0 0 0 0

−1 0 0 0 0

 ,

B =
[
0 0 0 0 −1

]T
, C =

[
0 1 0 0 0
0 0 1 0 0

]T
. (50)

This DAE system is solvable since the matrix pencil λE − A is regular, i.e.

det(λE − A) = λ (5λ+3)
12 6= 0 does not vanish identically. This system is stable

with finite eigenvalues σf (E,A) = {0,−3
5}, thus we expect to have a differential

part of dimension 2. Its transfer function is given by:

H(s) = CT (sE −A)−1B =
1

5s+ 3

[
2s+ 3

3

]
. (51)

Then, we decouple the DAE system into differential and algebraic parts:

ξ′p =

[
−0.6 0
−0.2 0

]
ξp +

[
−0.6
−0.2

]
u, (52a)

ξq =

 0 0
0.6 0
−0.2 0

 ξp +

 −1
−0.4
−0.2

u, (52b)

y =

[
0 0
1 0

]
ξp +

[
0 1 0
0 0 0

]
ξq. (52c)

We observe that σ(Ap) = σf (E,A) as expected. We can also see that the number
of differential equations is np = 2 and the number of algebraic equations is nq = 3.
Thus, the total dimension of the decoupled system is also 5. Using the formula (32)
the transfer function of the decoupled system (52) can be decomposed as:

H(s) =
1

5s+ 3

[
0
3

]
+

1

5s+ 3

[
2s+ 3

0

]
, (53)

where Hp(s) = 1
5s+3

[
0
3

]
and Hq(s) = 1

5s+3

[
2s+ 3

0

]
are the transfer functions

of the differential and algebraic parts respectively. We can see that that transfer
functions (51) and (53) coincide. For comparison system (52) can be written in
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descriptor form:

Ẽ =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , Ã =


−0.6 0 0 0 0
−0.2 0 0 0 0

0 0 −1 0 0
0.6 0 0 −1 0
−0.2 0 0 0 −1

 , B̃ =


−0.6
−0.2
−1
−0.4
−0.2


C̃ =

[
0 0 0 1 0
1 0 0 0 0

]T
. (54)

Then, we need to compare the PRIMA method with the IMOR method. We choose
s0 = 1 as the expansion point for both methods. For PRIMA method, we obtained
the following reduced model of dimension 3:

Er =

 0.03 0.076596 0.012745
0.076596 0.19556 0.032541
0.012745 0.032541 1.4539

 , Ar =

 −0.05 −0.027534 −0.12308
0.27284 −0.30088 0.023584
0.16101 −0.11662 −0.039381

 ,
Br =

 0.1
−0.24531
−0.18533

 , Cr =

 0.5 0.3
0.27534 0.76596
0.24813 0.12745

 . (55)

Next, we construct a reduced model using the index aware MOR described in
section 4.2. If we again choose s0 = 1 as the expansion point and using definition
(24), we obtain the orthonormal matrix to reduce the differential part given by:

Vp =

[
−0.94868
−0.31623

]
. (56)

Then, we use (56) to compute the orthonormal matrix Vq for the algebraic part
by first computing the column matrix Vq in (26) and then its orthonormal basis
which is given by :

Vq =

−0.87758 0.37274
−0.45863 −0.83591
−0.13965 0.40288

 . (57)

Using (56) and (57) we build a block diagonal orthornormal basis matrix given by:

V =


−0.94868 0 0
−0.31623 0 0

0 −0.87758 0.37274
0 −0.45863 −0.83591
0 −0.13965 0.40288

 (58)

Applying this column matrix on matrices (54), we obtain the IMOR model of 3



September 19, 2012 Mathematical and Computer Modelling of Dynamical Systems
Nico˙nMCMpaper

20 G. Al̀ı, N. Banagaaya, W. H. A. Schilders, C. Tischendorf.

dimension given by:

Ẽr =

1 0 0
0 0 0
0 0 0

 , Ãr =

 −0.6 0 0
0.23456 −1 0
0.55225 0 −1

 , B̃r =

 0.63246
1.089
−0.11895

 ,
C̃r =

 0 −0.94868
−0.45863 0
−0.83591 0

 (59)

Thus, (55) and (59) are the reduced models of system (50) using the PRIMA and
IMOR methods respectively. We observe that the PRIMA model is an ODE while
IMOR is a DAE. Thus IMOR preserves the index of the DAE system while PRIMA
model does not. We can also observe that the PRIMA model matrices are full while
IMOR model matrices are sparse. In Figure 2, we compare the magnitude of the
transfer function of the reduced models with the original model. We observe that
both transfer functions coincides with that of the original model. In Figure 3, we

Figure 2. Frequency response

compare the output solutions of the reduced models. We observe that both models
lead to good solutions, although IMOR is more accurate since it has a smaller
approximation error that of PRIMA model as shown in Figure 4.

Figure 3. Comparison of the output Solutions, u(t) = 10 sin(t), t ∈ [0, 2π]
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Figure 4. Approximation error

5.2.2. Industrial examples

These benchmark examples below are index 1 systems obtained from Rommes’s
webpage [14]. These examples are large power system models.

Example 5.4 We consider a power system called nopss, which is a single input-
single output (SISO) dynamical system of dimension 11685. The sparsity of its
matrix pencil is shown in the Figure 5. We decoupled this DAE system into 1257

Figure 5. Sparsity of matrix pencil (E,A)

differential equations and 10428 algebraic equations, using the modified decom-
position procedure based on projectors. The sparsity of the matrix pencil of the
decoupled system is shown in Figure 6. Using s0 = 0 as the expansion point, we

Figure 6. Sparsity of matrix pencil (Ẽ, Ã)

reduced the DAE system to a total dimension of 801 using the IMOR method.
The dimension of the differential and algebraic equations in the reduced model is
shown in Table 1. The IMOR model is sparse and preserves the index of the DAE
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system as shown in Figure 7. For comparison, we used the PRIMA method and we
reduced the DAE system to order 801. The sparsity of matrix pencil of the PRIMA
model is shown in Figure 8. We observe that the PRIMA model are very dense and
it is an ODE thus does not preserve the index of the DAE system.

Table 1. Dimension of IMOR model
Decoupled system Reduced Model

# differential equations # algebraic equations # differential equations # algebraic equations
1257 10428 400 401

Figure 7. Sparsity of matrix pencil (Ẽr, Ãr) of IMOR model

Figure 8. Sparsity of matrix pencil (Er,Ar) of PRIMA model

In Figure 9, we compare the magnitude of the transfer functions and their nu-
merical error for the two MOR methods. We can observe that the magnitude of
the transfer function coincides with that of the reduced models in both approaches
with very small approximation error as shown in Figure 9. In Figure 10, we com-
pare the output solutions of both reduced models with the original model and their
respective approximation error. We see that the both methods lead to good solu-
tion with small approximation error. In Table 2 we compare the computational
cost of solving the original and reduced models. We carried out the experiments
using the implicit method implementation in Matlab software to solve the systems
at a fixed relative tolerance. We observed that the solver failed to solve the DAE
system while it was able to solve the decoupled system in few seconds as shown
in Table 2. We can also observe that the IMOR model is cheaper to solve than
PRIMA model.

Table 2. Computational time (in seconds)

Original Model Reduced Model
Relative tolerance DAE system Decoupled system PRIMA model IMOR model
RelTol = 10−6 − 26 24 3
RelTol = 10−3 − 17 32 1.5
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(a) Frequency response. (b) Frequency response error.

Figure 9. Frequency response and its error

(a) Output solution y(t) (b) Approximation error

Figure 10. Output Solutions, input function u(t) = sin(t), t ∈ [0, π]

Example 5.5 We consider another power system called bips98−606 , which is a
multiple input-multiple output (MIMO) dynamical system with 4 inputs and 4
outputs. This system is of dimension 7135 and the sparsity of its matrix pencil
(E,A) is shown in the Figure 11. We decoupled this system into 606 and 6529

Figure 11. Sparsity of matrix pencil (E,A)

differential and algebraic equations, respectively. The sparsity of the matrix pencil
of the decoupled system in the descriptor form is shown in Figure 12.

Using the same expansion point as in the previous example, we reduced the DAE
system to total dimension 524. The sparsity of the matrix pencil of the IMOR model
is shown in Figure 13. The decoupled system was used to 260 and 264 differential
and algebraic equations as shown in Table 3. Also for comparison, we reduced the

Table 3. Dimension of IMOR model
Decoupled system Reduced Model

# differential equations # algebraic equations # differential equations # algebraic equations
606 6529 260 264
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Figure 12. Sparsity of matrix pencil (Ẽ, Ã)

Figure 13. Sparsity of matrix pencil (Ẽr, Ãr) of IMOR model

system to dimension 524 using the PRIMA method. We observed that the PRIMA
model is an ODE and it has very dense matrices as shown Figure 14. In Figure 15,

Figure 14. Sparsity of matrix pencil (Er,Ar) of PRIMA model

we compare the magnitude of the transfer functions of reduced models with that
of the original model. We observe that IMOR model has more accurate transfer
function in the lower frequencies compared to the PRIMA model as shown in Figure
15(b). We solved both reduced models, using u(t) = [sin(t), sin(t), sin(t), sin(t)]T as
input function. The PRIMA model fails to give a solution, while the IMOR model
leads to good solutions as shown in Figure 16. Figure 17 shows the approximation
error of the output solution.

In Table 4, we repeated the same experiments as in the previous example. We
observed that also for this example the solver failed to solve the DAE system. We
were able to solve the decoupled system in few seconds as shown in the Table 4.

Table 4. Computational time (in seconds)

Original Model Reduced Model
Relative tolerance DAE system Decoupled system PRIMA model Index-aware model
RelTol = 10−6 − 22 − 1.8
RelTol = 10−3 − 14 − 1.3
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(a) Frequency response. (b) Frequency response error.

Figure 15. Frequency response and its error.

(a) y1(t) (b) y2(t).

(c) y3(t). (d) y4(t).

Figure 16. Output solutions of the index-aware model and original model.

Figure 17. Approximation error

From the above experiments, we can conclude that the IMOR method is a bet-
ter method than the traditional MOR for reducing DAE systems and can be used
on both SISO and MIMO dynamical systems. We have observed that this meth-
ods leads to sparse and simple reduced models which are easier to solve than the
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PRIMA method. By construction, the IMOR method preserves the index of the
DAE system. In this paper, we have restricted ourselves to Krylov methods but
this method can also be extended to the non-Krylov methods.

6. Conclusion

We have proposed a new MOR method for index-1 DAE, which is based on explic-
itly splitting into differential and algebraic systems. The method has the attractive
property that it preserves the tractability index of the original DAE. Another in-
teresting feature of the method is a reduction of the algebraic variables which is
induced by the reduction of the order of the inherent differential system. Moreover,
conventional methods, like PRIMA, may lead to reduced models which are difficult
to solve numerically, as shown in example 5.5, while reduced models obtained by
the IMOR method do not present numerical difficulties.

In real-life problems, our method allows for a more pronounced reduction of the
system than with conventional methods, still maintaining very good accuracy of
the solution. We also note that the comparison shows a lower frequency response
error of our method in the relevant range of frequency, near the frequency used
for the moments of the transfer function. Although our method requires the in-
version of an order-n matrix, in practical examples, with sparse matrices, this is
not an inconvenience. Finally, our method can be extended to systems with higher
tractability index. This will be the topic of a forthcoming paper.
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