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INDEX-AWARE MODEL ORDER REDUCTION FOR INDEX-2
DIFFERENTIAL-ALGEBRAIC EQUATIONS∗

G. AL̀ı† , N. BANAGAAYA, W. H. A. SCHILDERS ‡ , AND C. TISCHENDORF§

Abstract. A model order reduction (MOR) method for index-2 differential-algebraic equations
(DAEs) is introduced, which is based on the intrinsic differential equations contained in the starting
system and on the remaining algebraic constraints. This extends the method introduced in a previous
paper for index-1 DAEs. This procedure is implemented numerically and the results show numerical
evidence of its robustness over the traditional methods.

Key words. differential algebraic equations, tractability index, model order reduction, modified
decomposition of DAEs

AMS subject classifications. 78M34, 65L80

1. Introduction. Consider a linear time invariant differential-algebraic equation
(DAE) in descriptor form:

Ex′ = Ax+Bu, x(0) = x0, (1.1a)

y = CTx, (1.1b)

with matrices E ∈ Rn,n, A ∈ Rn,n, C ∈ Rn,`, B ∈ Rn,m, state vector x ∈ Rn, control
input u ∈ Rm, output y ∈ R` and initial value x0 ∈ Rn. We assume that the matrix
pencil (E,A) := {A−λE |λ ∈ C} is regular, that is, det(A−λE) 6= 0 for at least one
value of λ ∈ C. Moreover, the matrix E is assumed to be singular, so that (1.1a) is
not an ordinary differential equation (ODE). We also assume that x0 is a consistent
initial value for the DAE and u is smooth enough.

There exist many developed MOR methods for reducing ODEs, i.e., when E is
non-singular, but little has yet been done to reduce DAEs. Some of these methods can
be found in [18, 2]. Most recent attempts to reduce DAEs are given in [4, 14, 16, 7].
Usually, the balanced truncation method is used. This method involves solving a
Lyapunov equation, which can be computationally very expensive. In [7], the authors
reduce index-2 systems from electric power grids by first converting the DAE into an
ODE. In [14] the reduction approach involves solving a projected Lyapunov equation.
In [16] a passivity preserving approach for circuits has been developed based on certain
projected Lyapunov equations. In practice balanced truncation methods cannot be
used on very large systems. Other attempts where made by using the Krylov-based
subspace methods for descriptor systems such as PRIMA, SPRIM [15, 8], but these
methods should not be used on DAEs with index greater than one, as discussed in
Section 3.1. Furthermore, these methods do not always preserve the index of a DAE,
which can lead to loss of relevant information of the original DAE.

In this paper we propose a new strategy of reducing index-2 systems. This strat-
egy is based on the ideas of März [12] of splitting a DAE into its differential and
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algebraic parts (possibly involving differentiations of other algebraic parts), by us-
ing appropriate projectors. This approach leads to a decoupled system of dimension
(µ + 1)n, where µ is the tractability index. The spectrum of the decoupled system
consists not only of the spectrum of the matrix pencil (E,A) of the original system
but also of additional infinite eigenvalues. This motivated us to do some modifications
in the decomposition, using special basis vectors, which leads to a modified decoupled
system of dimension n. Moreover, this decoupling preserves the spectrum of the ma-
trix pencil (E,A) of the DAE. We can now apply MOR on both the differential and
the algebraic parts. For the differential part, we use one of the existing MOR methods
for ODEs, and for the algebraic parts we propose a new method, which is based on
the reduction on the algebraic variables induced by the reduction on the differential
variables. We call the resulting method the index-aware MOR (IMOR) method. This
method leads to sparse reduced-order models and also always preserves the index of
the original DAE.

This paper is organized as follows. In Section 2 we discuss the decoupling of
index-2 DAEs into differential and algebraic parts. In particular, in Subsection 2.1
we give an overview of März decomposition and its limitations. In Subsection 2.2
we propose a modified decomposition which preserves the size of the original DAE.
Section 3 is devoted to model order reduction methods for DAEs. In Subsection 3.1 we
illustrate the limitation of using conventional methods for descriptor systems to reduce
DAEs, and in Subsection 3.2 we introduce the new IMOR method for reducing index-
2 systems, which we call IMOR-2. This method uses the decoupled system derived in
Subsection 3 instead of the original DAE in order to obtain the reduced-order model.
In Subsection 3.3 we compare the IMOR-2 method with the conventional methods
based on Krylov subspaces. In Section 4 we present some numerical examples, divided
into simple and industrial examples. The simple examples are used to illustrate the
idea of the method, and to show that the splitting of the DAE in differential and
algebraic equations is beneficial also for the numerical solution of the system. The
industrial examples show the feasibility of the method for real-life applications. The
paper is concluded by some final remarks, in Section 5.

2. Decomposition of index-2 systems. In this section, we discuss two ways
of decoupling index-2 systems by using projectors. The first decomposition, which we
call März decomposition, is achieved via canonical projectors. An extensive discussion
of decomposition of DAEs via canonical projectors can be found in [12]. The second
decomposition is simply a modification of the former decomposition which is suitable
for numerical implementation.

2.1. März decomposition. Let us consider equation (1.1a), given by

Ex′ = Ax+Bu. (2.1)

Following [12, 13], it is possible to introduce the notion of tractability index of system
(2.1). Roughly speaking, this index measures how many derivatives of the input u
appear in the solution. In fact, if the index is µ, then at most µ − 1 derivatives of
u will appear in the solution of (2.1). It is possible to show that the tractability
index is equivalent to the Kronecker index of the matrix pencil (E,A) for constant
matrices. In [12, 13], a different construction, based on geometrical concepts, making
use of appropriate projectors, was proposed. This construction has been summarized
in [1]. Here we specialize it briefly for index-2 systems, and we use it to decompose
the system (2.1) into a differential part and two algebraic parts.
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We assume that the tractability index of (2.1) is 2. We define

E0 := E, A0 := A.

Let Q0 be a projector on the nullspace of E0, that is,

Q2
0 = Q0, imQ0 = kerE0,

and let P0 = I−Q0. Then we define

E1 := E0 −A0Q0, A1 := A0P0.

Since we consider an index-2 system, E1 is singular. Let Q1 be a projector on the
nullspace of E1, that is,

Q2
1 = Q1, imQ1 = kerE1.

We can choose Q1 so that it satisfies the additional condition

Q1Q0 = 0. (2.2)

In fact, if Q̃1 is any projector onto kerE1, then we can define

Q1 = −Q̃1(E1 −A1Q̃1)−1A1.

It is possible to see that Q1 is a new projector onto kerE1 which satisfies (2.2). Let
P1 = I−Q1, and introduce the matrices

E2 = E1 −A1Q1, A2 = A1P1.

The index-2 condition is equivalent to assuming E2 non singular. It is possible to
prove that the following equivalent form of equation (2.1) holds [12]:

E2(P1P0x
′ +Q1x+Q0x) = A2x+Bu. (2.3)

Since E2 is invertible, we can left-multiply (2.3) by E−12 , and then use the projectors
P0P1, P0Q1 and Q0P1. Then we can introduce the variables

xP = P0P1x, xQ,1 = P0Q1x, xQ,0 = Q0x,

which satisfy the projected equations:

x′P = P0P1E
−1
2 (A2xP +Bu), (2.4a)

xQ,1 = P0Q1E
−1
2 (A2xP +Bu), (2.4b)

xQ,0 = Q0P1E
−1
2 (A2xP +Bu) +Q0Q1x

′
Q,1. (2.4c)

Equations (2.4a)-(2.4b) can be written as

x′P = APxP +BPu, (2.5a)

xQ,1 = AQ,1xP +BQ,1u, (2.5b)

xQ,0 = AQ,0xP +BQ,0u+AQ,01x
′
Q,1, (2.5c)
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with

AP := P0P1E
−1
2 A2, BP := P0P1E

−1
2 B,

AQ,1 := P0Q1E
−1
2 A2, BQ,1 := P0Q1E

−1
2 B,

AQ,0 := Q0P1E
−1
2 A2, BQ,0 := Q0P1E

−1
2 B, AQ,01 := Q0Q1.

It is possible to prove the following decomposition of the identity:

In = P0P1 + P0Q1 +Q0. (2.6)

It is simple to verify that the three terms on the right-hand side of (2.6) are mutually
orthogonal projectors, provided Q1Q0 = 0. Then the desired solution x of an index-2
system (2.1) can the be computed after solving the ODE (2.5a), by using the formula,

x = xP + xQ,1 + xQ,0.

This shows that the initial data x0 must be consistent with the equations. In
fact, if we decompose

x0 = xP,0 + xQ,1,0 + xQ,0,0 := P0P1x0 + P0Q1x0 +Q0x0,

then the component xP,0 determines uniquely the solution xP of the ODE (2.5a), by
means of the initial condition

xP (0) = xP,0, (2.7)

thus determining the other components xQ,1, xQ,0 by means of the algebraic con-
straints (2.5b) and (2.5c). It follows that for generic initial data x0 there might be an
initial boundary layer, if the constraints (2.5b), (2.5c) are not satisfied initially, for
t = 0.

The previous decomposition is still valid if P0P1 = 0, equality which is compatible
with index-2 conditions. In this case the components xP vanishes, and the projected
equations (2.5) reduce to

xQ,1 = BQ,1u, (2.8a)

xQ,0 = BQ,0u+AQ,01x
′
Q,1, (2.8b)

which is a system without differential equations. Notice that P0P1 = 0 implies P0 =
P0Q1, so that xQ,1 = P0Q1x = P0x. The solution of the original system can be
recovered immediately from (2.8),

x = xQ,1 + xQ,0 = BQ,1u+BQ,0u+AQ,01BQ,1u
′. (2.9)

This special case corresponds to a matrix pencil (E,A) with no finite eigenvalues.
This statement will become clear at the end of the following section.

2.2. Modified März decomposition. In the previous section, we have seen
that we can write the index-2 system (2.1) in the projected form (2.5), where xP ,
xQ,1, xQ,0 ∈ Rn. The projected system (2.5) is a decoupled system of total dimension
3n, while the original index-2 system (2.1) has dimension n. This may be expensive
in terms of storage and memory consumption, especially when solving systems in tens
of thousands of degrees of freedom, thus making it even more difficult to apply MOR



INDEX-AWARE MODEL ORDER REDUCTION FOR INDEX-2 DAES 5

methods on such a system. In general, decoupling an index-µ system by using the
projector approach leads to a decoupled system of dimension n(1 +µ). In this section
we come up with a strategy in order to eliminate this limitation.

We show how to represent system (2.5) in a simpler way by constructing new basis
column matrices from the projectors P0P1, P0Q1 and Q0. This procedure extends the
construction presented in [1] for index-1 DAEs. We start from the projectors Q0, P0,
Q1, P1 constructed in the previous section, with Q1Q0 = 0.

Let k0 = dim(kerE0), n0 = n − k0, and let us consider an orthonormal basis
matrix (p0, q0) = (p0,1, · · · , p0,n0

, q0,1, · · · , q0,k0) ∈ Rn which contains k0 independent
columns q0,i of Q0, which span imQ0 = kerE0, and n0 independent columns p0,i of
P0, which span imP0 = kerQ0. Since (p0, q0) is a basis matrix, it is invertible, and
let (p∗0, q

∗
0)T be its inverse, with q∗0 ∈ Rn,k0 and p∗0 ∈ Rn,n0 . Then, (p∗0, q

∗
0)T (p0, q0) =

In = (p0, q0)(p∗0, q
∗
0)T , that is,

q∗T0 q0 = Ik0 , q∗T0 p0 = 0, p∗T0 q0 = 0, p∗T0 p0 = In0
, (2.10)

q0q
∗T
0 + p0p

∗T
0 = In. (2.11)

The previous relations imply that we can represent the projectors Q0 and P0 as

Q0 = q0q
∗T
0 , P0 = p0p

∗T
0 . (2.12)

Note that, by construction, we have

Q0q0 = q0, Q0p0 = 0, P0q0 = 0, P0p0 = p0.

We are now going to find a simple representation of the projectors P0P1 and
P0Q1, which appear in (2.6) and are used for the decomposition of the variable x.
Recalling the identities (2.10), after multiplying (2.6) by p∗T0 from the left, and by p0
from the right, we obtain

In0 = P01 +Q01 := p∗T0 P1p0 + p∗T0 Q1p0.

It is immediate to see that P01 and Q01 are mutually orthogonal projectors, acting
on Rn0 . This leads to the following proposition.

Proposition 2.1. Let P01 = p∗T0 P1p0, Q01 = p∗T0 Q1p0, then P01, Q01 ∈ Rn0,n0

are projectors in Rn0 provided the constraint condition Q1Q0 = 0 holds. Moreover
they are mutually orthogonal.

Let k1 = dim(imQ01), and n01 = n0− k1. Here we need to distinguish two cases:
n01 > 0, or n01 = 0. The first case corresponds to the matrix pencil (E,A) having at
least one finite eigenvalue, while the second case corresponds to (E,A) with no finite
eigenvalues.

2.2.1. Matrix pencil (E,A) with finite eigenvalues (n01 > 0). If n01 > 0,
we can proceed for Q01 and P01 as we have done for Q0 and P0. Let us consider a
basis matrix (p01, q01) ∈ Rn0 made of n01 independent columns of projection matrix
P01 and k1 independent columns of the complementary projection matrix Q01. We
denote by (p∗01, q

∗
01)T the inverse of (p01, q01), such that

p∗T01 p01 = In01
, p∗T01 q01 = 0, q∗T01 p01 = 0, q∗T01 q01 = Ik1 ,

p01p
∗T
01 + q01q

∗T
01 = In0

. (2.13)

Then, we can represent P01, Q01 as

P01 = p01p
∗T
01 , Q01 = q01q

∗T
01 ,
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and we have

P01p01 = p01, P01q01 = 0, Q01p01 = 0, Q01q01 = q01.

Proposition 2.2. Let n01 > 0, P01 = p01p
∗T
01 , Q01 = q01q

∗T
01 , and let the

constraint Q1Q0 = 0 holds. Then the projectors P0P1, P0Q1 can be decomposed
as follows:

P0P1 = p0p01p
∗T
01 p
∗T
0 , P0Q1 = p0q01q

∗T
01 p
∗T
0 . (2.14)

Proof. Since P01 = p∗T0 P1p0, Q01 ≡ p∗T0 Q1p0, we have:

p01p
∗T
01 = p∗T0 P1p0, q01q

∗T
01 = p∗T0 Q1p0.

Multiplying the above identities by p0 from the left, and by p∗T0 from the right, and
recalling that p0p

∗T
0 = P0, we obtain

p0p01p
∗T
01 p
∗T
0 = P0P1P0, p0q01q

∗T
01 p
∗T
0 = P0Q1P0.

Since Q1Q0 = 0, we have Q1P0 = Q1(I − Q0) = Q1, and P0P1P0 = P 2
0 − P0Q1P0 =

P0 − P0Q1 = P0P1, hence the thesis. tu
We can now expand x with respect to the basis (p0p01, p0q01, q0), obtaining the

decomposition

x = p0p01ξp + p0q01ξq,1 + q0ξq,0, (2.15)

where ξp ∈ Rn01 , ξq,1 ∈ Rk1 , ξq,0 ∈ Rk0 , with inversion expressions

ξp = p∗T01 p
∗T
0 x, ξq,1 = q∗T01 p

∗T
0 x, ξq,0 = q∗T0 x. (2.16)

We note that the variables ξp, ξq,1, ξq,0 are related to the variables xP , xQ,1, xQ,0 by
the relations

xP = p0p01ξp, xQ,1 = p0q01ξq,1, xQ,0 = q0ξq,0,

ξp = p∗T01 p
∗T
0 xP , ξq,1 = q∗T01 p

∗T
0 xQ,1, ξq,0 = q∗T0 xQ,0.

The projected equations (2.4) can be written as

ξ′p = Apξp +Bpu, (2.17a)

ξq,1 = Aq,1ξp +Bq,1u, (2.17b)

ξq,0 = Aq,0ξp +Bq,0u+Aq,01ξ
′
q,1, (2.17c)

with

Ap := p∗T01 p
∗T
0 E−12 A2p0p01 ∈ Rn01,n01 , Bp := p∗T01 p

∗T
0 E−12 B ∈ Rn01,m,

Aq,1 := q∗T01 p
∗T
0 E−12 A2p0p01 ∈ Rk1,n01 , Bq,1 := q∗T01 p

∗T
0 E−12 B ∈ Rk1,m,

Aq,0 := q∗T0 P1E
−1
2 A2p0p01 ∈ Rk0,n01 , Bq,0 := q∗T0 P1E

−1
2 B ∈ Rk0,m,

Aq,01 := q∗T0 Q1p0q01 ∈ Rk0,k1 .

We can see that the number of differential equations is equal to n01 and k1 +k0 is the
total number of algebraic equations, thus the total system dimension is n01+k1+k0 =
n0 +k0 = n. This is illustrated in Example 1. We note that the rank of E is no longer
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equal to the number of differential equations as for the case of index-1 systems, rather
it is equal to n01 + k1 = n0. If we apply initial condition ξp(0) = p∗T01 p

∗T
0 x0, where x0

is an initial condition, we can solve the differential part (2.17a), then solve algebraic
parts (2.17b) and (2.17c). If the initial data is consistent, we obtain numerically
stable solutions, otherwise we see the formation of an initial boundary layer. In
general, solving system (2.17) is computationally cheaper than solving system (2.5).

In order to gain some insight on the decomposed system (2.17), we write it in the
descriptor form:

Ẽξ′ = Ãξ + B̃u, (2.18)

where

Ẽ =

In01 0 0
0 0 0
0 −Aq,01 0

 , Ã =

 Ap 0 0
Aq,1 −Ik1 0
Aq,0 0 −Ik0

 , B̃ =

 BpBq,1
Bq,0

 ,

and ξ =

 ξpξq,1
ξq,0

 is the projected state space. By construction, we see that

ξ = V −1x, (2.19)

where

V :=
[
p0p01 p0q01 q0

]
=

p∗T01 p∗T0q∗T01 p
∗T
0

q∗T0


−1

,

and by comparison with the original system (2.1) we find

(Ẽ, Ã) = W (E,A)V, B̃ = WB, (2.20)

where W = M−1V −1E−12 = (E2VM)−1,

M =

In01
0 0

0 Ik1 0
0 Aq,01 Ik0

 =

In01
0 0

0 Ik1 0
0 −Aq,01 Ik0

−1 .
Since the matrices V and W are invertible, it follows that the matrix pencil (Ẽ, Ã) is
equivalent to (E,A), so they have the same spectrum. It is simple to check that

det(Ã− λẼ) = (−1)k0+k1 det(Ap − λIn01
). (2.21)

This identity shows that the finite eigenvalues of the matrix pencil (E,A) coincide
with the (possibly complex) eigenvalues of the matrix Ap of the ordinary differential
system (2.17), which are exactly n01, counting their multiplicity. This also shows that
the stability of the DAE (2.1) is equivalent to the stability of the ODE system (2.17a).
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2.2.2. Matrix pencil (E,A) with no finite eigenvalues (n01 = 0). If n01 =
0, then imQ01 = Rn0 , thus P01 = 0. It follows that P0P1 = 0, since by definition 0 =
p0P01p

∗T
0 = P0P1P0 = P0P1. Then, we have also P0Q1 = P0, so the decomposition

(2.15) reduces to

x = xQ,1 + xQ,0 = p0ξq,1 + q0ξq,0, (2.22)

where ξq,1 ∈ Rk1 , ξq,0 ∈ Rk0 , k1 = n0, and with inversion expressions

ξq,1 = p∗T0 xQ,1, ξq,0 = q∗T0 xQ,0.

The projected system (2.8) becomes

ξq,1 = Bq,1u, (2.23a)

ξq,0 = Bq,0u+Aq,01ξ
′
q,1, (2.23b)

with

Bq,1 := p∗T0 E−12 B ∈ Rn0,m, Bq,0 := q∗T0 P1E
−1
2 B ∈ Rk0,m,

Aq,01 := q∗T0 Q1p0 ∈ Rk0,n0 .

We can see that this system does not involve differential equations, and the total
number of algebraic equations is equal to k1 + k0 = n0 + k0 = n, which is the
dimension of the DAE, as illustrated in Example 2. In order to solve (2.23), we first
solve the algebraic part (2.23a), then (2.23b), and the solution is:

x = p0ξq,1 + q0ξq,0 = p0Bq,1u+ q0Bq,0u+ q0Aq,01Bq,1u
′.

As in the previous case, this system (2.23) can also be written in the descriptor
form:

Ẽξ′ = Ãξ + B̃u, (2.24)

where

Ẽ =

[
0 0

−Aq,01 0

]
, Ã =

[
−Ik1 0

0 −Ik0

]
, B̃ =

[
Bq,1
Bq,0

]
,

and ξ =

[
ξq,1
ξq,0

]
is the projected state space. By construction, we see that

ξ = V −1x, (2.25)

where

V :=
[
p0 q0

]
=

[
p∗T0
q∗T0

]−1
,

and by comparison with the original system (2.1) we find

(Ẽ, Ã) = W (E,A)V, B̃ = WB, (2.26)

with W = M−1V −1E−12 = (E2VM)−1,

M =

[
Ik1 0
Aq,01 Ik0

]
=

[
Ik1 0
−Aq,01 Ik0

]−1
.
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The matrix V and W are nonsingular, so the matrix pencil (Ẽ, Ã) is equivalent to
(E,A), thus they have the same spectrum. It is simple to check that

det(Ã− λẼ) = (−1)k0+k1 6= 0. (2.27)

This identity shows that the matrix pencil (E,A), equivalent to (Ẽ, Ã), has no finite
eigenvalues. From system (2.18) and (2.24), we observe that this form also reveals
the interconnection structure of the DAE (1.1a).

2.2.3. Examples of decomposition of DAEs. In this subsection we illustrate
the decomposition of a system of DAEs by means of projectors and by the modified
decomposition procedure. Example 1 refers to a system with differential variables,
corresponding to a matrix pencil (E,A) with finite eigenvalues. Example 2 illustrates
both decompositions for a system with no differential variables, that is, corresponding
to a matrix pencil with no finite eigenvalues.

Example 1. Consider an index 2 system (2.1), with:

E =

0 1 0
0 0 0
0 0 1

 , A =

1 0 0
0 1 0
0 0 2

 , B =

1
1
1

 .
Since det(λE − A) = s − 2 6= 0, the matrix pencil (E,A) is regular, and the DAE is
solvable. We can choose projectors

Q0 =

1 0 0
0 0 0
0 0 0

 , Q1 =

0 1 0
0 1 0
0 0 0

 ,
which satisfy the condition Q1Q0 = 0, and the corresponding complementary projec-
tors are Pi = I−Qi, i = 0, 1. The differential and algebraic variables are

xP = P0P1x =

 0
0
x3

 , xQ,1 = P0Q1x =

 0
x2
0

 , xQ,0 = Q0x =

x10
0

 .
The last values of the matrix chains are given by:

E2 =

−1 1 0
0 −1 0
0 0 1

 , A2 =

0 0 0
0 0 0
0 0 2

 .
Thus system is indeed index 2, since E2 is non-singular and its inverse is given by

E−12 =

−1 −1 0
0 −1 0
0 0 1

 .
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Thus, we can decoupled this system into the form (2.5), given by:

x′P =

0 0 0
0 0 0
0 0 2

xP +

0
0
1

u, (2.28a)

xQ,1 =

0 0 0
0 0 0
0 0 0

xP +

 0
−1

0

u, (2.28b)

xQ,0 =

0 0 0
0 0 0
0 0 0

xP +

−1
0
0

u+

0 1 0
0 0 0
0 0 0

x′Q,1. (2.28c)

We assign zero initial data for the differential variable, xP (0) = 0, that is, x3(0) = 0.
Then, using the decoupled system (2.28), we find the initial conditions for the algebraic
variables,

xQ,1(0) =

 0
−u(0)

0

 , xQ,0(0) =

−u(0)− u′(0)
0
0

 .
The initial conditions for xP , xQ,1 and xQ,0 correspond to the following consistent
initial data for the original unknown x,

x(0) =

−u′(0)− u(0)
−u(0)

0

 .
We remark that the expression of the consistent initial data cannot be derived by direct
inspection of the original system (2.1).

We can see that the decoupled system (2.28) is of total dimension 9 while the
original system has dimension 3.

Next we modify the decoupled system (2.28) into a compact form, as discussed
in section 2.2. First, we need to construct a basis matrix (p0, q0) in Rn, and the
corresponding inverse (p∗0, q

∗
0)T , given in this case by

p0 =

0 0
1 0
0 1

 , q0 =

1
0
0

 , p∗T0 =

[
0 1 0
0 0 1

]
, q∗T0

[
1 0 0

]
, (2.29)

so that Q0 = q0q
∗T
0 , P0 = p0p

∗T
0 . Then, using Proposition 2.1, and the projectors Q1,

P1, above introduced, we construct projectors in Rn01 given by:

P01 =

[
0 0
0 1

]
, Q01 =

[
1 0
0 0

]
.

Then we construct a basis matrix (p01, q01) in Rn01 , and the corresponding inverse
(p∗01, q

∗
01)T , given by

p01 =

[
0
1

]
, q01 =

[
1
0

]
, p∗T01 =

[
0 1

]
, q∗T01 =

[
1 0

]
, (2.30)
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so that Q01 = q01q
∗T
01 , P01 = p01p

∗T
01 . The variables ξp, ξq,1, ξq,0, are given by

ξp = p∗T01 p
∗T
0 x = x3, ξq,1 = q∗T01 p

∗T
0 x = x2, ξq,0 = q∗T0 x = x1.

Using (2.29) and (2.30), we can rewrite (2.28) into the compact form (2.17) given
by:

ξ′p = 2ξp + u, (2.31a)

ξq,1 = −u, (2.31b)

ξq,0 = −u+ ξ′q,1. (2.31c)

The consistent initial data x(0), corresponding to xP (0) = 0, reduces to the initial
data ξp(0) = 0 for the differential variable. Then, we obtain the desired solution as:

x =

0
0
1

 ξp +

0
1
0

 ξq,1 +

1
0
0

 ξq,0. (2.32)

We can now see that the decoupled system (2.31) has the same dimension as the
original system.

Both decoupled systems (2.28) and (2.31) lead to same solution,

x1(t) = −u′(t)− u(t), x2(t) = −u(t), x3(t) = e2t
∫ t

0

e−2τu(τ) dτ,

though (2.31) is much simpler to solve than (2.28). We can also observe that σ(E,A) =
σ(Ap) = {2} as expected.

Example 2. Consider the simple RL network below:

i(t)

G

iR1

L
iL

e1 e2

Fig. 2.1. Simple RL network.

Using the MNA on the above network leads to a DAE of the form (2.1), where x =
[e1, e2, iL]T and u = i(t), with system matrices given by

E =

0 0 0
0 0 0
0 0 L

 , A =

−G G 0
G −G −1
0 1 0

 , B =

1
0
0

 .
We can see that det(λE − A) = G > 0, so this system is solvable and its matrix
pencil (E,A) has only infinite eigenvalues. Thus its decoupled system has no inherent
differential equations, so it must take the form (2.23).
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We choose the projectors

Q0 =

1 0 0
0 1 0
0 0 0

 , Q1 =

0 0 L
0 0 L
0 0 1

 , (2.33)

such that Q1Q0 = 0 holds. We can check that P0P1 = 0, so there are no differential
variables. The algebraic variables are

xQ,1 = P0Q1x = P0x =

 0
0
iL

 , xQ,0 = Q0x =

e1e2
0

 .
The last matrices in the matrix chain are

E2 =

 G −G 0
−G G 1

0 −1 L

 , A2 = 0. (2.34)

Since E2 is non-singular, this is an index 2 system. In the split form (2.8), the system
becomes:

xQ,1 =

0
0
1

u, (2.35a)

xQ,0 =

G−10
0

u+

0 0 L
0 0 L
0 0 0

x′Q,1. (2.35b)

To obtain the compact decomposition we need a basic matrix (p0, q0) and its in-
verse (p∗T0 , q∗T0 ), with span q0 = spanQ0, span p0 = spanP0:

p0 =

0
0
1

 , q0 =

1 0
0 1
0 0

 , p∗T0 =
[
0 0 1

]
, q∗T0 =

[
1 0 0
0 1 0

]
. (2.36)

The variables ξq,1, ξq,0, are given by

ξq,1 = p∗T0 x = iL, ξq,0 = q∗T0 x =

[
e1
e2

]
.

Thus, using (2.36), the DAE can be written in the form (2.23):

ξq,1 = u, (2.37a)

ξq,0 =

[
G−1

0

]
u+

[
L
L

]
ξ′q,1, (2.37b)

which can be solved immediately, since it has no differential equations. The solution
is

ξq,1 = u, ξq,0 =

[
G−1u+ Lu′

Lu′

]
,

from which we find

x =

0
0
1

 ξq,1 +

1 0
0 1
0 0

 ξq,0 =

G−1u+ Lu′

Lu′

u

 . (2.38)

Thus the solution of the circuit system is e1 = G−1u+ Lu′, e2 = Lu′, iL = u.
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3. Model order reduction. In this section, we discuss the model order reduc-
tion for index-2 systems. The section is divided into two subsections. In Subsection
3.1, we discuss the limitations of applying conventional methods directly on DAEs,
while in Subsection 3.2, we propose a new MOR method to overcome these limitations.

3.1. Limitations of convectional MOR methods. In this subsection, we
discuss how using conventional MOR methods, such as Krylov based methods, on
higher index DAEs can lead to a good approximation of the transfer function but the
resulting reduced-order models may be wrong or very difficult to solve.

Example 3. Consider an index-2 dynamical system below:

Ex′ = Ax+Bu, x(0) = x0 (3.1a)

y = CTx, (3.1b)

with system matrices,

E =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

 , A =


−4 2 −1 1 0.5

1 −1 1 0 −0.5
−1 1 0 1 0

1.25 2.25 0 −4 1
−0.5 −0.5 0 1 0

 , C =


0
0
1
1
0

 .
This system is solvable since the polynomial det(λE − A) = 2λ + 3 doesn’t vanish
identically and in addition, we assume that input function u is differentiable in the
desired time interval and x(0) is a consistent initial condition. In this example we
consider two different cases of control input matrix B with input data u(t) = cos(t).

(i) If B =
[
−1 0 0 0 0

]T
, then the consistent initial condition is given by

x(0) =
[
0 0 0 0 0

]T
. We then apply the PRIMA method [15] on the

DAE (3.1). Using s0 = 0 as the expansion point leads to a reduced-order
model below:

Er =

0.73684 0.12114 0.42065
0.12114 0.019915 0.069155
0.42065 0.069155 0.25289

 ,
Ar =

−0.94737 −0.32015 −1.7338
−0.15575 −0.052632 −0.24306
−0.5754 −0.15246 −1.3469

 , Br =

0.68825
0.11315
0.41802

 ,
Cr =

−0.22942
0.67888
−0.88987

 , xr(0) =

 0.11471
−0.69774

−1.8834e− 016

 . (3.2)

The reduced-order model is an ODE, that is, Er is invertible. In Figure
3.1, we compare the transfer function of the original model with that of the
reduced-order model. We can see that the transfer functions coincide with a
very small error as shown in Figure 3.1(b).
The next step is to solve the reduced-order model and compare its solution
with that of the original model. We solved the reduced-order model and the
differential part of the original model in Matlab software, using in both cases
ode15s at RelTol = 10−6. We observed that the original model requires 69
timesteps while the reduced-order model requires 75 timesteps to reach the



14 G. AL̀ı, N. BANAGAAYA, W. H. A. SCHILDERS AND C. TISCHENDORF

desired accuracy. Figure 3.2 shows that the solution of the original model
coincides with that of the reduced-order model (PRIMA model). Thus the
PRIMA model (3.2) is a good reduced-order model for the original system
(3.1) since the reduced-order model leads to accurate solutions.

(a) Frequency response (b) Frequency response error

Fig. 3.1. Example 3(i). Comparison of frequency response and its error.

Fig. 3.2. Example 3(i). Output solution, RelTol = 10−6.

(ii) If B =
[
0 0 0 0 −1

]T
, then the consistent initial condition is given by

x(0) =
[
0.5 −0.5 0.75 1 4

]T
. Using the same expansion point as before

we obtain a reduced-order model given by:

Er =

0.043881 0.017375 −0.1498
0.017375 0.25518 0.24928
−0.1498 0.24928 0.89488

 ,
Ar =

 0.20569 −0.06545 0.052663
−0.06545 −0.15133 −0.84866
0.052663 0.86786 −3.9271

 Br =

−0.92577
0.29458
−0.23702

 ,
Cr =

 0.46288
0.66642
−0.97969

 , xr(0) =

 4.1613
−0.78707
−0.35553

 . (3.3)

Still the PRIMA method leads to a ODE reduced-order model and also for
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this case the transfer function of the original model coincides with that of the
reduced-order model (3.3) as shown in Figure 3.3.
We then solved the reduced-order model (3.3) and we observed that the reduced-
order model leads to a good solution, if the RelTol ≥ 0.1 as shown in Figure
3.4.

(a) Frequency response (b) Frequency response error

Fig. 3.3. Example 3(ii). Comparison of frequency response and its error.

Fig. 3.4. Example 3(ii). Output solution, RelTol = 0.1.

The above example shows that solving the reduced-order model (3.3) is more
difficult than solving (3.2), since we cannot achieve any better accuracy in the solution.
This is due to the fact that the consistent initial condition x0 in this example depends
on u and its derivative, while in the former it only depends on u. We know that
conventional methods always assume that x(0) vanishes, but this assumption is not
valid for DAEs, since we do not have enough freedom to choose the initial condition.
We note that the conventional methods can reduce the DAE if its consistent initial
condition x0 only depends on u, otherwise the resulting reduced-order model is not
acceptable.

The above discussion shows that we cannot use conventional methods to reduce
higher index DAEs in general. This motivated us to develop a new technique for
reducing index-2 systems which eliminates this inconvenience, as discussed in the
next subsection.

3.2. Index-aware MOR for index-2 systems (IMOR-2). In Section 2.2, we
saw that an index-2 system can be decoupled in two ways depending on the spectrum



16 G. AL̀ı, N. BANAGAAYA, W. H. A. SCHILDERS AND C. TISCHENDORF

of the matrix pencil (E,A). In this section, we propose a new technique of reducing
index-2 systems depending on the nature of its matrix pencil. We call this technique
“index-aware MOR” for index-2 systems (IMOR-2).

In short the idea is the following: attempt to reduce only the differential part, by
using any MOR method; then, make explicit the limitation to the algebraic variables
due to their explicit expression, obtained by the projection procedure. If there is no
differential part, still the second part of the above reduction procedure can be applied.

For definiteness, and for its wide application and simplicity of implementation,
we concentrate on Krylov-based MOR methods.

3.2.1. Matrix pencil (E,A) with finite eigenvalues. Assume that the DAE
in descriptor form (1.1) is an index-2 dynamical system and its matrix pencil (E,A)
has at least one finite eigenvalue. Then, recalling (2.15) and (2.17), equation (1.1)
can be written as:

ξ′p = Apξp +Bpu, (3.4a)

ξq,1 = Aq,1ξp +Bq,1u, (3.4b)

ξq,0 = Aq,0ξp +Bq,0u+Aq,01ξ
′
q,1, (3.4c)

y = CTp ξp + CTq,1ξq,1 + CTq,0ξq,0, (3.4d)

where Cp = pT01p
T
0 C ∈ Rn01,`, Cq,1 = qT01p

T
0 C ∈ Rk1,` and Cq,0 = qT0 C ∈ Rk0,`. In

descriptor form, this system can be written as

Ẽξ′ = Ãξ + B̃u, (3.5a)

y = C̃T ξ, (3.5b)

with (Ẽ, Ã) = W (E,A)V , B̃ = WB, C̃ = V TC, and V , W defined as in (2.18).
We can rewrite (3.4) in three blocks, strictly separating the differential and alge-

braic parts,

ξ′p = Apξp +Bpu, (3.6a)

yp = CTp ξp, (3.6b)

ξq,1 = Aq,1ξp +Bq,1u, (3.7a)

yq,1 = CTq,1ξq,1, (3.7b)

and

ξq,0 = Aq,0ξp +Bq,0u+Aq,01ξ
′
q,1, (3.8a)

yq,0 = CTq,0ξq,0. (3.8b)

We observe that the subsystem (3.6) is an ODE, while (3.7) and (3.8) are algebraic
subsystems. We can also see that using the output equations of these subsystems, we
can reconstruct the output equation of (3.4) as,

y = yp + yq,1 + yq,0. (3.9)

1. Reduction of the differential part ξp.
To reduce the differential part (3.6) we use a Krylov-subspace-based method, which
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preserves the first r moments of the transfer function. The transfer function measures
the sensitivity of the output with respect to the input, in frequency domain. Taking
the Laplace transform of (3.6) and simplifying, we obtain:

Ξp(s) = (sI−Ap)−1BpU(s) + (sI−Ap)−1ξp(0), (3.10)

Yp(s) = CTp Ξp(s), (3.11)

which yields

Yp(s) = CTp (sI−Ap)−1BpU(s) + CTp (sI−Ap)−1ξp(0). (3.12)

Thus, the transfer function restricted to the ODE part is given by

Hp(s) = CTp (sI−Ap)−1Bp. (3.13)

We choose s0 ∈ C \ σ(Ap), and we consider the subspace

Vp := Kr(Mp(s0), Rp(s0)), r ≤ n01, (3.14)

where

Mp(s0) = (s0I −Ap)−1, and Rp(s0) = (s0I −Ap)−1Bp,

and Kr(Mp, Rp) is the order-r Krylov subspace generated by Mp and Rp,

Kr(Mp, Rp) = span {Rp,MpRp, . . . ,M
r−1
p Rp}.

We denote by Vp ∈ Rn01,rm the matrix of an orthonormal basis of Vp, so that we have

V Tp Vp = I. We seek an approximate solution of the form ξp = Vpξ̂p, that is, we replace
equation (3.6) with

ξ̂′p = Âpξ̂p + B̂pu, (3.15a)

ŷp = ĈTp ξ̂p, (3.15b)

where

Âp = V Tp ApVp, B̂p = V Tp Bp, and Ĉp = V Tp Cp.

By construction, this reduced system has a transfer function whose first r moments
around s0 coincide with the first r moments of the original transfer function Hp(s).

2. Reduction of the algebraic part ξq,1.
The reduction of the differential part induces a reduction of the algebraic parts. First
we consider the algebraic part ξq,1. We denote by ξ∗q,1 the expression obtained from

(3.7a) by using the approximation ξp = Vpξ̂p, that is,

ξ∗q,1 = Aq,1Vpξ̂p +Bq,1u.

This expression shows that ξ∗q,1 belongs to the subspace

Vq,1 = span {Bq,1, Aq,1Vp} = span {Bq,1}+Aq,1Kr(Mp, Rp). (3.16)
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We denote by nq,1 the dimension of Vq,1, and by Vq,1 ∈ Rk1,nq,1 the matrix of an
orthonormal basis of Vq,1, so that V Tq,1Vq,1 = I. Then we can approximate the algebraic

solution in the form ξ∗q,1 = Vq,1ξ̂q,1, that is, we replace (3.7) with

ξ̂q,1 = Âq,1ξ̂p + B̂q,1u, (3.17a)

ŷq,1 = ĈTq,1ξ̂q,1, (3.17b)

with

Âq,1 = V Tq,1Aq,1Vp, B̂q,1 = V Tq,1Bq,1, and Ĉq,1 = V Tq,1Cq,1.

3. Reduction of the algebraic part ξq,0 .
Finally, we consider the reduction of the algebraic part ξq,0, which involves differen-
tiations of ξq,1. We denote by ξ∗q,0 the expression obtained from (3.8a) by writing

ξp = V Tp ξ̂p, ξq,1 = V Tq,1ξ̂q,1,

ξ∗q,0 = Aq,0Vpξ̂p +Bq,0u+Aq,01Vq,1ξ̂
′
q,1.

This expression shows that ξ∗q,0 belongs to the subspace

Vq,0 = span {Bq,0, Aq,01Vq,1, Aq,0Vp},
≡ span {Bq,0, Aq,01Bq,1, Aq,01Aq,1Vp, Aq,0Vp}. (3.18)

We denote by nq,0 the dimension of Vq,0, and by Vq,0 ∈ Rk0,nq,0 the matrix of an
orthonormal basis of Vq,0, so that V Tq,0Vq,0 = I. Then we can approximate the algebraic

solution in the form ξ∗q,0 = Vq,0ξ̂q,0, that is, we replace (3.8) with

ξ̂q,0 = Âq,0ξ̂p + B̂q,0u+ Âq,01ξ̂
′
q,1, (3.19a)

ŷq,0 = ĈTq,0ξ̂q,0, (3.19b)

where Âq,0 = V Tq,0Aq,0Vp, Âq,01 = V Tq,0Aq,01Vq,1, B̂q,0 = V Tq,0Bq,0, and Ĉq,0 = V Tq,0Cq,0.
Combining subsystem (3.15), (3.17) and (3.19), we obtain a reduced-order model of
the DAE (2.1) given by:

Êξ̂′ = Âξ̂ + B̂u, (3.20a)

ŷ = ĈT ξ̂, (3.20b)

with

(Â, Ê) = V̂ T (Ã, Ẽ)V̂ , B̂ = V̂ T B̃, Ĉ = V̂ T C̃,

ξ̂ =

 ξ̂pξ̂q,1
ξ̂q,0

 , V̂ =

Vp 0 0
0 Vq,1 0
0 0 Vq,0

 .
Here, the matrices Ã, Ẽ are as in (3.5).
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3.2.2. Matrix pencil (E,A) has no finite eigenvalues. Next we assume that
the DAE (1.1) is an index-2 dynamical system and that its matrix pencil (E,A) has
no finite eigenvalues. Then, recalling (2.22) and (2.23), equation (1.1) can be written
as

ξq,1 = Bq,1u, (3.21a)

ξq,0 = Bq,0u+Aq,01ξ
′
q,1, (3.21b)

y = CTq,1ξq,1 + CTq,0ξq,0, (3.21c)

where Cq,1 = pT0 C ∈ Rn0,`, Cq,0 = qT0 C ∈ Rk0,`. In compact form, this system can be
written, again, as

Ẽξ′ = Ãξ + B̃u, (3.22a)

y = C̃T ξ, (3.22b)

with (Ẽ, Ã) = W (E,A)V , B̃ = WB, C̃ = V TC, and V , W as in (2.24).
We can rewrite (3.21) in two blocks, strictly separating the algebraic parts,

ξq,1 = Bq,1u, (3.23a)

yq,1 = CTq,1ξq,1, (3.23b)

and

ξq,0 = Bq,0u+Aq,01ξ
′
q,1, (3.24a)

yq,0 = CTq,0ξq,0. (3.24b)

Using the output equations of these algebraic subsystems, we can reconstruct the
output equation of (3.21) as,

y = yq,1 + yq,0. (3.25)

1. Reduction of the algebraic part ξq,1.
In this case the algebraic variable ξq,1 can be computed directly from equation (3.23a).
This expression shows that ξq,1 belongs to the subspace

Vq,1 = spanBq,1. (3.26)

We denote by nq,1 the dimension of Vq,1, and by Vq,1 ∈ Rk1,nq,1 the matrix of an
orthonormal basis of Vq,1, so that V Tq,1Vq,1 = I. Then we can approximate the algebraic

solution in the form ξ∗q,1 = Vq,1ξ̂q,1, that is, we replace (3.23) with

ξ̂q,1 = B̂q,1u, (3.27a)

ŷq,1 = ĈTq,1ξ̂q,1, (3.27b)

where

B̂q,1 = V Tq,1Bq,1, Ĉq,1 = V Tq,1Cq,1.

2. Reduction of the algebraic part ξq,0.
Finally, we consider the reduction of algebraic part ξq,0. We denote by ξ∗q,0 the ex-

pression obtained from (3.24a) by using the approximation ξq,1 = V Tq,1ξ̂q,1, that is,

ξ∗q,0 = Bq,0u+Aq,01Vq,1ξ̂
′
q,1.
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This expression shows that ξ1q,0 belongs to the subspace

Vq,0 = span {Bq,0, Aq,01Vq,1}. (3.28)

We denote by nq,0 the dimension of Vq,0, and by Vq,0 ∈ Rk0,nq,0 the matrix of an
orthonormal basis of Vq,0, so that V Tq,0Vq,0 = I. Then we can approximate the algebraic

solution in the form ξ∗q,0 = Vq,0ξ̂q,0, that is, we replace (3.24) with

ξ̂q,0 = B̂q,0u+ Âq,01ξ̂
′
q,1, (3.29a)

ŷq,0 = ĈTq,0ξ̂q,0, (3.29b)

where

Âq,01 = V Tq,0Aq,01Vq,1, B̂q,0 = V Tq,0Bq,0, Ĉq,0 = V Tq,0Cq,0.

Also combining Equation (3.23) and (3.24), we obtain a reduced-order model in
descriptor form given by:

Êξ̂′ = Âξ̂ + B̂u, (3.30a)

ŷ = ĈT ξ̂, (3.30b)

with

(Â, Ê) = V̂ T (Ã, Ẽ)V̂ , B̂ = V̂ T B̃, Ĉ = V̂ T C̃,

ξ̂ =

[
ξ̂q,1
ξ̂q,0

]
, V̂ =

[
Vq,1 0

0 Vq,0

]
.

Here, the matrices Ã, Ẽ are as in (3.22).
We note that the orthonormal basis matrices Vq,1 and Vq,0 can be computed

numerically either using the modified Gram-Schmidt or SVD based methods. In this
paper, we use the SVD method, in this way the dimension of the reduced parts can be
determined by truncating the columns of either Vq,1 or Vq,0 which corresponds to the
number largest singular values. The approach gives a further reduction of the order
of the reduced algebraic parts, as shown in Example 4.

3.3. Comparison with traditional projection methods. In the previous
subsection, we have proposed a new MOR procedure, based on the decomposition
of a DAE in differential and algebraic components. Starting from the system in
decoupled form, we reduce first the ODE part, and then observe that this reduction
induces a reduction also on the other parts. In this section we compare the new, index-
aware MOR method with traditional MOR methods. In order to make the comparison
more effective, we concentrate on a specific class of MOR methods, namely, projection
methods.

In traditional projection methods, the starting point is the state space system
(1.1). The main idea is to find a reduction procedure which preserves the first moments
of the transfer function of the system. The transfer function is defined by taking the
Laplace transform of the previous expression and computing explicitly the Laplace
transform Y (s) of y(t) as a function of the data, that is, the Laplace transform U(s)
of the input u(t), and the initial data x0. Explicitly, we find

Y (s) = CTR(s)U(s) + CTM(s)x0, (3.31)



INDEX-AWARE MODEL ORDER REDUCTION FOR INDEX-2 DAES 21

with

M(s) := (sE −A)−1E, R(s) := (sE −A)−1B.

Then, the transfer function H(s) is the term in front of U(s), which measure the
dependence of the output on the input, that is,

H(s) := CTR(s). (3.32)

It is simple to see that, for any s0 which is not in the spectrum of (E,A), we can
write

R(s) = [I +M(s0)(s− s0)]−1R(s0). (3.33)

By using the Neumann expansion, we find

R(s) =
∞∑
k=0

R(k)(s0)(s− s0)k,

with

R(k)(s0) := (−1)kM(s0)kR(s0).

Thus the transfer function can be expanded around s = s0 as:

H(s) =

∞∑
k=0

h(k)(s0)(s− s0), (3.34)

where the k-th moment h(k)(s0) of H(s) around s0 is given by the formula

h(k)(s0) := CTR(k)(s0) = (−1)kCTM(s0)kR(s0). (3.35)

One wishes to find a subspace such that the projection of the original system into this
subspace is a reduced system which preserves the first r moments. We consider an
orthonormal basis of this hypothetical subspace, which we can write in the columns
of a matrix V̂ , with V̂ T V̂ = I. Then the reduced system is :

Êx̂ = Âx̂+ B̂u,

ŷ = ĈT x̂,

with (Ê, Â) = V̂ T (E,A)V̂ , B̂ = V̂ TB, Ĉ = V̂ TC. Again, we find the formal expan-
sion of R̂(s) around s = s0,

R̂(s) =

∞∑
k=0

R̂(k)(s0)(s− s0)k, R̂(k)(s0) := (−1)kM̂(s0)kR̂(s0),

where

M̂(s) := (sÊ − Â)−1Ê, R̂(s) := (sÊ − Â)−1B̂.

The transfer function of the reduced system can be written as

Ĥ(s) = ĈT R̂(s) =

∞∑
k=0

ĥ(k)(s0)(s− s0), (3.36)
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with

ĥ(k)(s0) := ĈT R̂(k)(s0) = (−1)kĈT M̂(s0)kR̂(s0). (3.37)

It follows that the first r moments of H(s) are preserved if and only if

ĈT R̂(k)(s0) = CTR(k)(s0), k = 0, 1, . . . , r − 1. (3.38)

It can be proved that this condition is satisfied if V̂ is chosen so that

span{V̂ } = Kr(M(s0), R(s0)), (3.39)

where Kr(M,R) is the order-r Krylov space generated by M , R, that is, the sub-
space spanned by R, MR, . . . , Mr−1R. This choice defines the traditional projection
methods.

We wish to give some insight on the method. Since V̂ V̂ T is a projector onto
Kr(M(s0), R(s0)), by construction we have

V̂ V̂ TM(s0)jR(s0) = M(s0)jR(s0), j = 0, 1, . . . , r − 1, (3.40)

which yields

V̂ V̂ TR(j)(s0) = R(j)(s0), j = 0, 1, . . . , r − 1. (3.41)

It is possible to prove that condition (3.40) implies

M̂(s0)jR̂(s0) = V̂ TM(s0)jR(s0), j = 0, 1, . . . , r − 1,

that is,

R̂(j)(s0) = V̂ TR(j)(s0), j = 0, 1, . . . , r − 1. (3.42)

Then, for k = 0, 1, . . . , r − 1, we have

ĥ(k)(s0) = ĈT R̂(k)(s0) = CT V̂ V̂ TR(k)(s0) = CTR(k)(s0) = h(k)(s0),

which shows that the chosen moments are preserved.
Next, we observe that the transfer function is invariant for equivalent systems.

The system

Ẽξ′ = Ãξ + B̃u,

y = C̃T ξ,

is said equivalent to system (1.1) if there exist invertible matrices V , W such that
x = V ξ, and

(Ẽ, Ã) = W (E,A)V, B̃ = WB, C̃ = V TC. (3.43)

The transfer function is then

H̃(s) = C̃T R̃(s) = C̃T (sẼ − Ã)−1B̃

= CTV [W (sE −A)V ]−1WB = CT (sE −A)−1B

= CTR(s) = H(s).
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In particular, we can use the structure of the system obtained after the decoupling,
that is, we use the descriptor form (3.5) of the projected index-2 system, with trans-
formation matrices V , W as in (2.18) :

Ẽ =

In01
0 0

0 0 0
0 −Aq,01 0

 , Ã =

 Ap 0 0
Aq,1 −Ik1 0
Aq,0 0 −Ik0

 , B̃ =

 BpBq,1
Bq,0

 ,
C̃ =

[
Cp Cq,1 Cq,0

]T
. (3.44)

Using these matrices we obtain,

(sẼ − Ã)−1 =

 Mp(s) 0 0

Aq,1Mp(s) Ik1 0

(sAq,01Aq,1 +Aq,0)Mp(s) 0 Ik0

 , (3.45)

where Mp(s) := (sIn01
−Ap)−1. Then we can write

R̃(s) =

 Rp(s)Rq,1(s)

Rq,0(s)

 :=

 Rp(s)

Aq,1Rp(s) +Bq,1

Aq,0Rp(s) + sAq,01Rq,1(s) +Bq,0

 , (3.46)

where Rp(s) := (sIn01
−Ap)−1Bp.

Since the transfer function is the same for equivalent systems, we find

H(s) = C̃T R̃(s) = Hp(s) +Hq,1(s) +Hq,0(s), (3.47)

with

Hp(s) := CTp Rp(s), Hq,1(s) := CTq,1Rq,1(s), Hq,0(s) := CTq,0Rq,0(s). (3.48)

The IMOR-2 method amounts to consider separately the three parts of the transfer
function. We can prove that, if the first r moments of Hp(s) around s = s0 are
preserved, then we can ensure that the first r moments of Hq,1(s) and Hq,0(s) around
s = s0 are preserved by using the projection spaces Vq,1, Vq,0 prescribed by the IMOR
method, which leads to the reduced equation (3.20).

To see this, we expand separately the three parts of the transfer function. We
recognize that Hp(s) is the transfer function of the differential model (3.6). Then,
reasoning as in the traditional approach, we can write

Rp(s) = [I +Mp(s0)(s− s0)]−1Rp(s0) =

∞∑
k=0

R(k)
p (s0)(s− s0)k, (3.49)

with

R(k)
p (s0) := (−1)kMp(s0)kRp(s0).

Thus the transfer function Hp(s) can be expanded around s = s0 as:

Hp(s) =

∞∑
k=0

h(k)p (s0)(s− s0), (3.50)
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where the k-th moment h
(k)
p (s0) of Hp(s) around s0 is given by the formula

h(k)p (s0) := CTp R
(k)
p (s0) = (−1)kCTpMp(s0)kRp(s0).

Since VpV
T
p is a projector onto Kr(Mp(s0), Rp(s0)), we have

VpV
T
p Mp(s0)kRp(s0) = Mp(s0)kRp(s0), k = 0, 1, . . . , r − 1,

which implies

R̂(k)
p (s0) = V Tp R

(k)
p (s0), (3.51)

and thus

ĥ(k)p (s0) = h(k)p (s0). (3.52)

Next we expand Hq,1(s) around s = s0, by using the expansion of Rp(s). We find

Rq,1(s) = Aq,1Rp(s) +Bq,1 =

∞∑
k=0

R
(k)
q,1(s0)(s− s0)k, (3.53)

with

R
(0)
q,1(s0) := Aq,1R

(0)
p (s0) +Bq,1 = Aq,1Rp(s0) +Bq,1,

R
(k)
q,1(s0) := Aq,1R

(k)
p (s0) = (−1)kAq,1Mp(s0)kRp(s0), k > 0,

which yields

Hq,1(s) =

∞∑
k=0

h
(k)
q,1(s0)(s− s0)k, (3.54)

with

h
(k)
q,1(s0) := CTq,1R

(k)
q,1(s0).

Since Vq,1V
T
q,1 is a projector onto span{Aq,1Vp, Bq,1}, we have

Vq,1V
T
q,1R

(k)
q,1(s0) = R

(k)
q,1(s0), k = 0, 1, . . . , r − 1. (3.55)

It follows

R̂
(0)
q,1(s0) = Âq,1R̂

(0)
p (s0) + B̂q,1

= V Tq,1Aq,1VpV
T
p R

(0)
p (s0) + V Tq,1Bq,1

= V Tq,1Aq,1R
(0)
p (s0) + V Tq,1Bq,1

= V Tq,1R
(0)
q,1(s0),

and similarly

R̂
(k)
q,1(s0) = V Tq,1R

(k)
q,1(s0), k = 1, 2, . . . , r − 1.
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Then we have

ĥ
(k)
q,1(s0) = ĈTq,1R̂

(k)
q,1(s0) = CTq,1Vq,1V

T
q,1R

(k)
q,1(s0) = CTq,1R

(k)
q,1(s0) = h

(k)
q,1(s0),

so the first r moments of Hq,1(s) are preserved.

Finally, we use the previous expansions of Rp(s) and Rq,1(s) to expand Hq,0(s)
around s = s0,

Rq,0(s) = Aq,0Rp(s) + sAq,01Rq,1(s) +Bq,0 =

∞∑
k=0

R
(k)
q,0(s0)(s− s0)k, (3.56)

with

R
(0)
q,0(s0) = Aq,0R

(0)
p (s0) + s0Aq,01R

(0)
q,1(s0) +Bq,0,

R
(k)
q,0(s0) = Aq,0R

(k)
p (s0) +Aq,01R

(k−1)
q,1 (s0), k > 0.

Since Vq,0V
T
q,0 is a projector onto span{Aq,0Vp, Aq,01Vq,1, Bq,0} we have

Vq,0V
T
q,0R

(k)
q,0(s0) = R

(k)
q,0(s0), k = 0, 1, . . . , r − 1. (3.57)

Then, proceeding as before, it is possible to show that

R̂
(k)
q,0(s0) = V Tq,0R

(k)
q,0(s0), k = 0, 1, . . . , r − 1, (3.58)

which implies

ĥ
(k)
q,0(s0) = h

(k)
q,0(s0), k = 0, 1, . . . , r − 1. (3.59)

In this way, we have shown that the iMOR-2 method preserves the first r moments
of the transfer function.

4. Numerical experiments. In this section, we present simple and industrial
problems of index 2 DAEs to demonstrate the effectiveness of our IMOR approach.
In subsection 4.2, we compare IMOR with the traditional method (PRIMA method)
using industrial examples. All the results are computed under Matlab environment
version 2010a on a laptop with 2.53 GHz Intel(R) Core(TM) 2 Duo CPU and 4 GB
RAM.

4.1. Simple problem. We consider again Example 3, applying IMOR-2 instead
of PRIMA.

Example 4. In this example we use system matrices E, A, B, C from Example
3. We have det(λE − A) = 2λ + 3 6= 0, ∀λ ∈ C, thus this system is solvable and its
matrix pencil (E,A) has one finite eigenvalue σf (E,A) = {− 3

2}. This implies that
we can use the IMOR-2 approach discussed in Section 3.2.1.

(i) Here we consider the case when B =
[
−1 0 0 0 0

]T
. The transfer

function of the DAE is given by:

H(s) = CT (sE −A)−1B =
1

2s+ 3
− 1

2
. (4.1)
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In order to apply the IMOR-2 we need to first decompose the DAE into dif-
ferential and algebraic parts given by:

ξ′p = −3

2
ξp −

3

4
u, (4.2a)

ξq,1 =

[
0
0

]
ξp +

[
0
0

]
u, (4.2b)

ξq,0 =

[
− 4

3

− 1
3

]
ξp +

[
− 1

2

− 1
2

]
u+

[
−1 11

30

0 1

]
ξ′q,1, (4.2c)

y =
2

3
ξp +

[
0 1

]
ξq,1 +

[
1 0

]
ξq,0. (4.2d)

Using formula (3.47) the transfer function (4.1) can be decomposed as:

H(s) = − 1

2s+ 3︸ ︷︷ ︸
Hp(s)

+ 0︸︷︷︸
Hq,1(s)

+
2

2s+ 3
− 1

2︸ ︷︷ ︸
Hq,0(s)

. (4.3)

The projected DAE (4.2) can be written in descriptor form as,
1 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 1 − 11

30 0 0

0 0 −1 0 0

 ξ′ =


− 3

2 0 0 0 0

0 −1 0 0 0
0 0 −1 0 0
− 4

3 0 0 −1 0

− 1
3 0 0 0 −1

 ξ +


− 3

4

0
0
− 1

2

− 1
2

u, (4.4a)

y =
[
2
3 0 1 1 0

]
ξ. (4.4b)

The next step is to apply the proposed MOR technique (IMOR-2) for index
2 system discussed in Section 3.2.1 on the projected DAE (4.4). Choosing
s0 = 0 as the expansion point, we can construct orthonormal bases for the
differential and algebraic parts of the decoupled system (4.2), given by:

Vp = −1,

Vq,1 =

[
−0.72015 −0.69382

0.69382 −0.72015

]
, Vq,0 =

[
−0.90749 −0.42008
−0.42008 0.90749

]
. (4.5)

We computed Vq,1 and Vq,0 using the SVD method and the corresponding
singular values are given by:

Sq,1 =

[
3.1× 10−16 0

0 5.0× 10−17

]
, Sq,0 =

[
1.9114 0

0 0.9327

]
.

The singular values can now give us the number columns of Vq,1 and Vq,0 we
can truncate. We observe that all columns of Vq,1 can be truncated since their
corresponding singular values are close to zero, while Vq,0 remains unchanged.
Thus the first algebraic part can be ignored, and the system reduces to an
index-1 system. Using (4.5) the reduced-order model can be written as:

ξ̂′p = −1.5ξ̂p − 0.75u, (4.6a)

ξ̂q,0 =

[
−1.3672

−0.14048

]
ξ̂p +

[
0.64035

−0.29992

]
u, (4.6b)

ŷ = −0.66667ξ̂p +
[
−0.94027 −0.34043

]
ξ̂q,0. (4.6c)
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In descriptor form the reduced-order model can be written as:1 0 0
0 0 0
0 0 0

 ξ̂′ =

 −1.5 0 0
−1.3672 −1 0
−0.14048 0 −1

 ξ̂ +

 0.75
0.64035
−0.29992

u (4.7a)

ŷ =
[
−0.66667 −0.94027 −0.34043

]
ξ̂ (4.7b)

Thus the original DAE is reduced from the dimension 5 to 3 using the IMOR-
2 method. In Figure 4.1, we compare the magnitude of the transfer function
of the reduced-order model (IMOR-2 model) with that of the original model.
We observe that their transfer functions coincide with a very small error, as
shown in Figure 4.1(b). The reduced-order model also leads to very accurate
solutions, as shown in Figure 4.2.

(a) Frequency response. (b) Frequency response error.

Fig. 4.1. Example 4(i). Frequency response and its error.

(a) Solution (b) Approximation error

Fig. 4.2. Example 4(i). Solution and its approximation error, u(t) = cos(t).

(ii) We now consider the case B =
[
0 0 0 0 −1

]T
. If we use the popular

formula for transfer function then we have,

H(s) = CT (sE −A)−1B =
1

2s+ 3
+

7

4
. (4.8)
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In order to apply the IMOR-2 method we need to first decompose the DAE
into the differential and algebraic parts, given by:

ξ′p = −3

2
ξp −

3

4
u, (4.9a)

ξq,1 =

[
0
0

]
ξp +

[
11
30
1

]
u, (4.9b)

ξq,0 =

[
− 4

3

− 1
3

]
ξp +

[
3
4

4

]
u+

[
−1 11

30

0 1

]
ξ′q,1, (4.9c)

y =
2

3
ξp +

[
0 1

]
ξq,1 +

[
1 0

]
ξq,0. (4.9d)

Thus the transfer function (4.8) can also be decomposed as:

H(s) = − 1

2s+ 3︸ ︷︷ ︸
Hp(s)

+ 1︸︷︷︸
Hq,1

+
2

2s+ 3
+

3

4︸ ︷︷ ︸
Hq,0(s)

.

The projected DAE (4.9) in descriptor form is given by:
1 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 1 − 11

30 0 0

0 0 −1 0 0

 ξ′ =


− 3

2 0 0 0 0

0 −1 0 0 0
0 0 −1 0 0
− 4

3 0 0 −1 0

− 1
3 0 0 0 −1

 ξ +


− 3

4
11
30
1
3
4

4

u, (4.10a)

y =
[
2
3 0 1 1 0

]
ξ. (4.10b)

The next step is to apply the proposed MOR technique (IMOR-2) on the
projected DAE (4.10). Choosing s0 = 0 as the expansion point, we can con-
struct orthonormal bases for differential and algebraic parts of decoupled sys-
tem (4.9) given by:

Vp = −1,

Vq,1 =

[
−0.34425 −0.93888
−0.93888 0.34425

]
, Vq,0 =

[
−0.21798 −0.97595
−0.97595 0.21798

]
. (4.11)

The corresponding singular values for Vq,1 and Vq,0 are given by

Sq,1 =

[
1.0651 0

0 2.7341× 10−16

]
, Sq,0 =

[
4.2145 0

0 1.2534

]
.

We can see that the last column of Vq,1 can be truncated since its corresponding
singular value is close to zero. Thus the block diagonal orthonormal basis
matrix can be written as:

V̂ =


−1 0 0 0
0 −0.34425 0 0
0 −0.93888 0 0
0 0 −0.21798 −0.97595
0 0 −0.97595 0.21798

 .
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If we substitute ξ = V̂ ξ̂ into Equation (4.10) leads to the reduced-order model:


1 0 0 0
0 0 0 0
0 −0.9163 0 0
0 0.20466 0 0

 ξ̂′ =


−1.5 0 0 0

0 −1 0 0
−0.61596 0 −1 0
−1.2286 0 0 −1

 ξ̂ +


0.75
−1.0651
−4.0673
0.13996

u
(4.12a)

ŷ =
[
−0.66667 −0.93888 −0.21798 −0.97595

]
ξ̂

(4.12b)

We can see that the dimension of the original model is reduced to 4, and the
index of the original system is preserved.
In Figure 4.3, we observe that the transfer function of the IMOR-2 model coin-
cides with that of the original model with very small error. The reduced-order
model leads to accurate solution as shown in Figure 4.4. From this example
we observe that the IMOR-2 method leads to a reduced-order model which
is more accurate than the reduced-order models obtained from the PRIMA
method.

(a) Frequency response. (b) Frequency response error.

Fig. 4.3. Example 4(ii). Frequency response and its error.

(a) Solution (b) Approximation error

Fig. 4.4. Example 4(ii). Solution and its relative error, u(t) = cos(t).
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4.2. Industrial problems. In this section we test the IMOR-2 method on large
scale problems.

Example 5. This is a MNA model that originates from [5]. It is an index-2
system with dimension 578. The sparsity of its matrix E and A are shown in Figure
4.5. Using the procedure in Section 2.2, we decouple the system into differential and
algebraic parts, as shown in the third row of Table 4.1. We then reconstruct the
projected DAE in the descriptor form, and the sparsity of its matrix pencil is shown
in Figure 4.6.

(a) Sparsity of matrix E. (b) Sparsity of matrix A.

Fig. 4.5. Example 5. Sparsity of the matrices (E,A).

(a) Sparsity of projected matrix Ẽ. (b) Sparsity of projected matrix Ã.

Fig. 4.6. Example 5. Sparsity of the projected matrices (Ẽ, Ã).

We used s0 = 0 as the expansion point and, we were able to reduce the decoupled
system of dimension 578 to a reduced system of total dimension 58 as shown in the
fourth row of Table 4.1.

Table 4.1
Example 5. Dimension of the original and reduced-order model.

Models Dimension
# differential eqns # 1st algebraic eqns # 2nd algebraic eqns

Original Model 4 301 273
IMOR-2 Model 4 26 28
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We compared the results with that of the PRIMA method applied directly on the
original DAE. Unfortunately, we could not obtain a reduced-order model of the same
dimension as the one obtained with IMOR-2. Figure 4.7 shows the sparsity of the
matrix pencil of the IMOR-2 model, while Figure 4.8 shows that of the PRIMA model.
If we compare the two figures you can see that the IMOR-2 method leads to a sparse
model, while the PRIMA method leads to a dense reduced-order model.

(a) Sparsity of Ê. (b) Sparsity of projected matrix Â.

Fig. 4.7. Example 5. Sparsity of the IMOR-2 model (n=58).

(a) Sparsity of Er. (b) Sparsity of projected matrix Ar.

Fig. 4.8. Example 5. Sparsity of the PRIMA model (n=63).

We observe that the PRIMA model is an ODE, thus it does not always preserve
the index of the DAE, while the IMOR-2 model does. In Figure 4.9, we compare
the transfer function of the original model and that of the reduced-order models. We
can observe that the magnitude of the transfer function of the original model coincides
with that of both reduced-order models. But when we solved both reduced-order models,
we observe that the PRIMA model leads to wrong solutions while the IMOR-2 model
leads to good solutions, as shown in Fig 4.10 .
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Fig. 4.9. Example 5. Comparison of the magnitude of the transfer function.

(a) Solution y1 (b) Solution y2

(c) Solution y3 (d) Solution y9

Fig. 4.10. Example 5. Solutions of the reduced-order model, u(t) = ones(9, 1) sin(2π × 106t).

Example 6. This is an electric power grid system [7] which can be found in [17].
It is a SISO system of dimension 4182 with the sparsity of matrix pencil (E,A) shown
in Figure 4.11. We were able to decouple the system into differential and algebraic
parts as shown in the third row of Table 4.2.

Table 4.2
Example 6. Dimension of the original and reduced-order model.

Models Dimension
# differential eqns # 1st algebraic eqns # 2nd algebraic eqns

Original Model 4028 35 119
IMOR-2 Model 170 0 84
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(a) Sparsity of matrix E. (b) Sparsity of matrix A.

Fig. 4.11. Example 6. Sparsity of the matrices (E,A) of the power system.

(a) Sparsity of projected matrix Ẽ. (b) Sparsity of projected matrix Ã.

Fig. 4.12. Example 6. Sparsity of the projected matrices (Ẽ, Ã) of the power system.

Figure 4.12 shows the sparsity of the matrix pencil (Ẽ, Ã) of the projected system.
Using s0 = 1 as the expansion point we were able to reduce the differential and alge-
braic parts as shown in the fourth row of Table 4.2. We reduced the dimension of the
algebraic parts in the same way as in the previous example, using singular values as
shown in Figure 4.13. Also in this example we can eliminate all the equations of the
first algebraic part since its corresponding singular values are close to zero as shown
in Figure 4.13(a). Thus the power system is reduced to a dimension of 254 and the
sparsity of its matrix pencil is shown in Figure 4.14 which is also sparse.

Figure 4.15 shows the sparsity of the reduced system using the PRIMA method
and we can observe that it leads to a dense model. We also observe that the PRIMA
method leads to an ODE while the IMOR method preserves the index of the system.

In Figure 4.16, we compare the magnitude of the transfer function of the original
model with that of the reduced-order models of both methods. We observe that both
reduced-order models coincide with that of the original model at low frequencies with
small error as shown in Figure 4.16. In Figure 4.17, we compare the output solutions
and their respective errors of the reduced-order models. We can observe that both
reduced-order models lead to accurate solutions.

In Table 4.3, we compare the computational cost of solving the reduced-order mod-
els. We observe that the IMOR-2 model is easier to solve than the PRIMA model since
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(a) Singular values of Vq,1. (b) Singular values of Vq,0.

Fig. 4.13. Example 6. Singular values corresponding to Vq,1 and Vq,0.

(a) Sparsity of Er. (b) Sparsity of projected matrix Ar.

Fig. 4.14. Example 6. Sparsity of the reduced power system using the IMOR-2 method.

(a) Sparsity of Er. (b) Sparsity of projected matrix Ar.

Fig. 4.15. Example 6. Sparsity of the reduced power system using the PRIMA method.

it requires less time, which is not a surprise. This is because IMOR-2 leads to sparse
reduced-order models while PRIMA leads to very dense reduced-order models.
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(a) Frequency response. (b) Frequency response error.

Fig. 4.16. Example 6. Comparison of the frequency response and its error.

(a) Output solution (b) Approximation error

Fig. 4.17. Example 6. u = sin(2π750(t− t1))(1 − e−
t
τ ), t1 = 3 ms, τ = 0.1 ms.

Table 4.3
Example 6. Computation cost, RelTol = 10−6.

Original model PRIMA model IMOR-2 model
Time (s) 81.5 261.5 4.7

Example 7. This example originates from the power test cases [17], which is
a MIMO index-2 dynamical system with 3 inputs and 3 outputs. This is a system
of dimension 4182. Using s0 = 1 as the expansion point, we were able to reduce the
system’s dimension to 329 using the IMOR-2 method, as shown in the Table 4.4.

Table 4.4
Example 7. Dimension of the original and reduced-order model.

Models Dimension
# differential eqns # 1st algebraic eqns # 2nd algebraic eqns

Original Model 4028 35 119
IMOR-2 Model 270 2 57

We observe that the transfer function of the IMOR-2 model coincides with that of
the original model with very small error, as shown in Figure 4.18. We then solved the
IMOR-2 model using sin(t) in all inputs and observed that it leads to good solutions
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with very small approximation error as shown in Figure 4.19. We also compared the
computational costs and observed that the original model and the IMOR-2 model take
2.5 and 0.8 seconds, respectively, at a relative tolerance 10−6.

(a) Frequency response. (b) Frequency response error.

Fig. 4.18. Example 7. Comparison of the frequency response and its error.

(a) Solution y1(t). (b) Solution y2(t).

(c) Solution y3(t). (d) Approximation error

Fig. 4.19. Example 7. Solutions and their approximation error.

5. Conclusion. We extended a new MOR method developed for linear index-1
DAEs [1] with constant coefficients to linear index-2 DAEs with constant coefficients.
In contrast to conventional approaches treating the DAE systems as a whole, the
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presented IMOR-2 method first splits the index-2 DAE into three parts: the inherent
differential equation part, the pure algebraic part and one part including differentia-
tions of the algebraic part. Then, the PRIMA method is used to reduce the differential
part whereas the algebraic and differentiation parts are treated by adapted projec-
tions.

We have discussed that conventional methods based on Krylov subspaces (like
the PRIMA method) may lead to wrong reduced-order models, or the reduced-order
models may be difficult to solve, if the consistent initial data depend on the derivatives
of the input vector u. It is caused by the fact that - in a conventional approach -
such methods are applied to the whole DAE system. Additionally, we have seen that
the the conventional PRIMA method may lead to reduced-order models with dense
matrices and a DAE index which differs from the one of the original system.

The IMOR-2 approach has the advantage that it leads to reduced-order models
which are sparse, always solvable and index preserving. An interesting additional
feature of this method is that it can also be applied to index-2 systems without
inherent differential equations. For the reduction of the differential part one could
also use other methods based on Krylov subspace instead of the PRIMA method.
Furthermore, an extension to DAEs with an index greater than 2 is naturally given
by exploiting an index-adapted decoupling approach as given in [11]. The development
of IMOR methods for higher index DAEs is not straightforward, and will be the topic
of a forthcoming paper [3].
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