64 research outputs found

    The sport value framework - a new fundamental logic for analyses in sport management

    Get PDF
    Research question: Sports economic theory and management models have frequently been criticised for not sufficiently explaining phenomena in sport management. This article addresses this gap by proposing a conceptual framework that can be used to understand sport management problems and derive appropriate strategies. Research methods: The framework proposed in this conceptual article has been developed through a critical review of existing literature on sport management and theoretical considerations based on the service-dominant logic. Results and findings: The sport value framework (SVF) provides 10 foundational premises on value co-creation in sport management and suggests three levels for its analysis. The main contribution is a new and better theoretical basis for explaining phenomena in sport management compared with traditional sport economic thinking. Moreover, the SVF provides guidance in structuring research in sport management. Implications: The framework encourages researchers and practitioners to rethink their strategies by applying a different logic that captures the complexity of sport management. © 2014 © 2014 European Association for Sport Management

    Meta-analysis of neural systems underlying placebo analgesia from individual participant fMRI data

    Get PDF
    The brain systems underlying placebo analgesia are insufficiently understood. Here we performed a systematic, participant-level meta-analysis of experimental functional neuroimaging studies of evoked pain under stimulus-intensity-matched placebo and control conditions, encompassing 603 healthy participants from 20 (out of 28 eligible) studies. We find that placebo vs. control treatments induce small, widespread reductions in pain-related activity, particularly in regions belonging to ventral attention (including mid-insula) and somatomotor networks (including posterior insula). Behavioral placebo analgesia correlates with reduced pain-related activity in these networks and the thalamus, habenula, mid-cingulate, and supplementary motor area. Placebo-associated activity increases occur mainly in frontoparietal regions, with high between-study heterogeneity. We conclude that placebo treatments affect pain-related activity in multiple brain areas, which may reflect changes in nociception and/or other affective and decision-making processes surrounding pain. Between-study heterogeneity suggests that placebo analgesia is a multi-faceted phenomenon involving multiple cerebral mechanisms that differ across studies

    Meta-analysis of neural systems underlying placebo analgesia from individual participant fMRI data

    Get PDF
    The brain systems underlying placebo analgesia are insufficiently understood. Here we performed a systematic, participant-level meta-analysis of experimental functional neuroimaging studies of evoked pain under stimulus-intensity-matched placebo and control conditions, encompassing 603 healthy participants from 20 (out of 28 eligible) studies. We find that placebo vs. control treatments induce small, widespread reductions in pain-related activity, particularly in regions belonging to ventral attention (including mid-insula) and somatomotor networks (including posterior insula). Behavioral placebo analgesia correlates with reduced pain-related activity in these networks and the thalamus, habenula, mid-cingulate, and supplementary motor area. Placebo-associated activity increases occur mainly in frontoparietal regions, with high between-study heterogeneity. We conclude that placebo treatments affect pain-related activity in multiple brain areas, which may reflect changes in nociception and/or other affective and decision-making processes surrounding pain. Between-study heterogeneity suggests that placebo analgesia is a multi-faceted phenomenon involving multiple cerebral mechanisms that differ across studies

    Athlete brand construction: A perspective based on fans’ perceptions

    Get PDF
    Abstract The purpose of this study was to develop a framework for understanding the antecedents and components of athlete brand. Based on a set of 21 interviews conducted in three different countries, a detailed framework is proposed including five antecedents and two components of athlete brand. The antecedents are media (social media, mass media, video games and major sport events), oral communications (word of mouth, and rumors and narratives), impression management, social agents (parents, family members, friends and community), and teams and sport (sport interest, team interest and team geographical location). In turn, the components of athlete brand are related with on-field attributes (behavior, team, achievements, style of play and skills) and off-field attributes (physical attraction, lifestyle, personal appeal, ethnicity and entertainment). Complementarily, these components of athlete brand are proposed to have an impact on fans' loyalty towards the athlete. Implications of these findings for building and managing athlete brand are discussed, and directions for future studies are provided

    Abdo-Man: a 3D-printed anthropomorphic phantom for validating quantitative SIRT

    Get PDF
    BACKGROUND: The use of selective internal radiation therapy (SIRT) is rapidly increasing, and the need for quantification and dosimetry is becoming more widespread to facilitate treatment planning and verification. The aim of this project was to develop an anthropomorphic phantom that can be used as a validation tool for post-SIRT imaging and its application to dosimetry. METHOD: The phantom design was based on anatomical data obtained from a T1-weighted volume-interpolated breath-hold examination (VIBE) on a Siemens Aera 1.5 T MRI scanner. The liver, lungs and abdominal trunk were segmented using the Hermes image processing workstation. Organ volumes were then uploaded to the Delft Visualization and Image processing Development Environment for smoothing and surface rendering. Triangular meshes defining the iso-surfaces were saved as stereo lithography (STL) files and imported into the Autodesk® Meshmixer software. Organ volumes were subtracted from the abdomen and a removable base designed to allow access to the liver cavity. Connection points for placing lesion inserts and filling holes were also included. The phantom was manufactured using a Stratasys Connex3 PolyJet 3D printer. The printer uses stereolithography technology combined with ink jet printing. Print material is a solid acrylic plastic, with similar properties to polymethylmethacrylate (PMMA). RESULTS: Measured Hounsfield units and calculated attenuation coefficients of the material were shown to also be similar to PMMA. Total print time for the phantom was approximately 5 days. Initial scans of the phantom have been performed with Y-90 bremsstrahlung SPECT/CT, Y-90 PET/CT and Tc-99m SPECT/CT. The CT component of these images compared well with the original anatomical reference, and measurements of volume agreed to within 9 %. Quantitative analysis of the phantom was performed using all three imaging techniques. Lesion and normal liver absorbed doses were calculated from the quantitative images in three dimensions using the local deposition method. CONCLUSIONS: 3D printing is a flexible and cost-efficient technology for manufacture of anthropomorphic phantom. Application of such phantoms will enable quantitative imaging and dosimetry methodologies to be evaluated, which with optimisation could help improve outcome for patients

    Robust imaging of hippocampal inner structure at 7T: in vivo acquisition protocol and methodological choices

    Get PDF
    International audienceOBJECTIVE:Motion-robust multi-slab imaging of hippocampal inner structure in vivo at 7T.MATERIALS AND METHODS:Motion is a crucial issue for ultra-high resolution imaging, such as can be achieved with 7T MRI. An acquisition protocol was designed for imaging hippocampal inner structure at 7T. It relies on a compromise between anatomical details visibility and robustness to motion. In order to reduce acquisition time and motion artifacts, the full slab covering the hippocampus was split into separate slabs with lower acquisition time. A robust registration approach was implemented to combine the acquired slabs within a final 3D-consistent high-resolution slab covering the whole hippocampus. Evaluation was performed on 50 subjects overall, made of three groups of subjects acquired using three acquisition settings; it focused on three issues: visibility of hippocampal inner structure, robustness to motion artifacts and registration procedure performance.RESULTS:Overall, T2-weighted acquisitions with interleaved slabs proved robust. Multi-slab registration yielded high quality datasets in 96 % of the subjects, thus compatible with further analyses of hippocampal inner structure.CONCLUSION:Multi-slab acquisition and registration setting is efficient for reducing acquisition time and consequently motion artifacts for ultra-high resolution imaging of the inner structure of the hippocampus
    corecore