182 research outputs found

    Contribution of water-limited ecoregions to their own supply of rainfall

    Get PDF
    The occurrence of wet and dry growing seasons in water-limited regions remains poorly understood, partly due to the complex role that these regions play in the genesis of their own rainfall. This limits the predictability of global carbon and water budgets, and hinders the regional management of naturalresources. Using novel satellite observations and atmospheric trajectory modelling, we unravel the origin and immediate drivers of growing-season precipitation, and the extent to which ecoregions themselves contribute to their own supply of rainfall. Results show that persistent anomalies in growing-season precipitation—and subsequent biomass anomalies—are caused by a complex interplay of land and ocean evaporation, air circulation and local atmospheric stability changes. For regions such as the Kalahari and Australia, the volumes of moisture recycling decline in dry years, providing a positive feedback that intensifies dry conditions. However, recycling ratios increase up to40%, pointing to the crucial role of these regions in generating their own supply of rainfall; transpiration in periods of water stress allows vegetation to partly offset the decrease in regional precipitation. Findings highlight the need to adequately represent vegetation–atmosphere feedbacks in models to predict biomass changes and to simulate the fate of water-limited regions in our warming climate

    Distributed Evaluation of Local Sensitivity Analysis (DELSA), with application to hydrologic models

    Get PDF
    This is the published version. Copyright 2014 American Geophysical UnionThis paper presents a hybrid local-global sensitivity analysis method termed the Distributed Evaluation of Local Sensitivity Analysis (DELSA), which is used here to identify important and unimportant parameters and evaluate how model parameter importance changes as parameter values change. DELSA uses derivative-based “local” methods to obtain the distribution of parameter sensitivity across the parameter space, which promotes consideration of sensitivity analysis results in the context of simulated dynamics. This work presents DELSA, discusses how it relates to existing methods, and uses two hydrologic test cases to compare its performance with the popular global, variance-based Sobol' method. The first test case is a simple nonlinear reservoir model with two parameters. The second test case involves five alternative “bucket-style” hydrologic models with up to 14 parameters applied to a medium-sized catchment (200 km2) in the Belgian Ardennes. Results show that in both examples, Sobol' and DELSA identify similar important and unimportant parameters, with DELSA enabling more detailed insight at much lower computational cost. For example, in the real-world problem the time delay in runoff is the most important parameter in all models, but DELSA shows that for about 20% of parameter sets it is not important at all and alternative mechanisms and parameters dominate. Moreover, the time delay was identified as important in regions producing poor model fits, whereas other parameters were identified as more important in regions of the parameter space producing better model fits. The ability to understand how parameter importance varies through parameter space is critical to inform decisions about, for example, additional data collection and model development. The ability to perform such analyses with modest computational requirements provides exciting opportunities to evaluate complicated models as well as many alternative models

    Soil moisture signature in global weather balloon soundings

    Get PDF

    Rainfall‐runoff responses and hillslope moisture thresholds for an upland tropical catchment in Eastern Madagascar subject to long‐term slash‐and‐burn practices

    Get PDF
    Slash‐and‐burn agriculture is an important driver of tropical forest loss and typically results in a mosaic of land uses. However, there is little quantitative information about the hydrological effects of long‐term slash‐and‐burn agriculture and how such mosaics affect the rainfall‐runoff response at the catchment scale. We monitored streamflow responses at two points along a perennial stream in a 31.7 ha catchment in eastern Madagascar that was monitored previously between 1963 and 1972. Land cover in 2015 consisted of degraded grasslands, shrub and tree fallows at various stages of regrowth (64%), eucalypt stands for charcoal production (30%), and rice paddies and wetlands in the valley‐bottom (3%). For the majority (60%) of the events during the study period, the ratio between the total amount of stormflow and rainfall was <3%, suggesting that for these events runoff was generated in the valley‐bottom only. Events for which an antecedent soil moisture storage plus rainfall (ASI + P) threshold was exceeded had much higher stormflow ratios (up to 50%), indicating that a certain wetness was required for the hillslopes to contribute to stormflow. Stable isotope sampling for four small to moderate events indicated that stormflow was dominated by pre‐event water. Total stormflow and annual water yield in 2015 were higher than in the 1960s, despite much lower rainfall in 2015. We attribute these differences to changes in soil physical properties caused by the repeated burning and loss of top‐soil, which has resulted in a reduction in the depth to the impeding layer. The changed runoff‐processes (less infiltration, more saturation‐excess overland flow) thus affect local water resources

    Soil moisture-Temperature Coupling: A multiscale observational Analysis

    Get PDF
    [1] Land-atmospheric interactions are complex and variable in space and time. On average soil moisture-temperature coupling is expected to be stronger in transition zones between wet and dry climates. During heatwaves anomalously high coupling may be found in areas of soil moisture deficit and high atmospheric demand of water. Here a new approach is applied to satellite andin situobservations towards the characterization of regions of intense soil moisture-temperature coupling, both in terms of climatology and anomalies during heatwaves. The resulting average summertime couplinghot spotsreflect intermediate climatic regions in agreement with previous studies. Results at heatwave-scale suggest a minor role of soil moisture deficit during the heatwave of 2006 in California but an important one in the 2003 event in Western Europe. Progress towards near-real time satellite products may allow the application of the approach to aid prediction and management of warm extremes

    Mapping (dis)agreement in hydrologic projections

    Get PDF
    Hydrologic projections are of vital socio-economic importance. However, they are also prone to uncertainty. In order to establish a meaningful range of storylines to support water managers in decision making, we need to reveal the relevant sources of uncertainty. Here, we systematically and extensively investigate uncertainty in hydrologic projections for 605 basins throughout the contiguous US. We show that in the majority of the basins, the sign of change in average annual runoff and discharge timing for the period 2070–2100 compared to 1985–2008 differs among combinations of climate models, hydrologic models, and parameters. Mapping the results revealed that different sources of uncertainty dominate in different regions. Hydrologic model induced uncertainty in the sign of change in mean runoff was related to snow processes and aridity, whereas uncertainty in both mean runoff and discharge timing induced by the climate models was related to disagreement among the models regarding the change in precipitation. Overall, disagreement on the sign of change was more widespread for the mean runoff than for the discharge timing. The results demonstrate the need to define a wide range of quantitative hydrologic storylines, including parameter, hydrologic model, and climate model forcing uncertainty, to support water resource planning

    Long-Term Alendronate Use Not without Consequences?

    Get PDF
    A previously unknown side effect of biphosphonate use is emerging. In a specific patient group on long term biphosphonate therapy stress femur fractures seem to occur. The typical presentation consists of prodromal pain in the affected leg and/or a discrete cortical thickening on the lateral side of the femur in conventional radiological examination or the presentation with a spontaneous transverse subtrochanteric femur with typical features. We present three cases of this stress fracture in patients on bisphosphonate therapy. One of these patients suffered a bilateral femur fracture of the same type. In our opinion, in patients on bisphosphonate therapy who present with a spontaneous femur fracture, seizing therapy is advisable. In bilateral cases preventive nailing should be considered
    • 

    corecore