358 research outputs found

    The orbit of the close spectroscopic binary epsilon Lupi and the intrinsic variability of its early B-type components

    Get PDF
    We subjected 106 new high-resolution spectra of the double-lined spectroscopic close binary epsilon Lupi, obtained in a time-span of 17 days from two different observatories, to a detailed study of orbital and intrinsic variations. We derived accurate values of the orbital parameters. We refined the sidereal orbital period to 4.55970 days and the eccentricity to e=0.277. By adding old radial velocities, we discovered the presence of apsidal motion with a period of the rotation of apses of about 430 years. Such a value agrees with theoretical expectations. Additional data is needed to confirm and refine this value. Our dataset did not allow us to derive the orbit of the third body, which is known to orbit the close system in approximately 64 years. We present the secondary of epsilon Lupi as a new beta Cephei variable, while the primary is a beta Cephei suspect. A first detailed analysis of line-profile variations of both primary and secondary led to detection of one pulsation frequency near 10.36 c/d in the variability of the secondary, while no clear periodicity was found in the primary, although low-amplitude periodicities are still suspected. The limited accuracy and extent of our dataset did not allow any further analysis, such as mode-identification.Comment: 13+3 pages, 20 figures. Astronomy and Astrophysics, accepte

    RAT J0455+1305: A rare hybrid pulsating subdwarf B star

    Full text link
    We present results on the second-faintest pulsating subdwarf B (sdB) star known, RAT J0455+1305, derived from photometric data obtained in 2009. It shows both short and long periods oscillations, theoretically assigned as pressure and gravity modes. We identify six short-period frequencies (with one being a combination) and six long-period frequencies. This star is the fourth hybrid sdB star discovered so far which makes it of special interest as each type of mode probes a different part of the star. This star is similar to the sdB hybrid pulsator Balloon 090100001 in that it exhibits short-period mode groupings, which can be used to identify pulsation parameters and constrain theoretical models.Comment: published in MNRA

    Interpretation of the variability of the <i>β</i> Cephei star <i>λ</i> Scorpii. I. The multiple character

    Get PDF
    We derive accurate values of the orbital parameters of the close binary β Cephei star λ Scorpii. Moreover, we present the first determination of the properties of the triple system to which λ Scorpii belongs. Our analysis is based on a time series of 815 high-resolution spectra, covering a timespan of 14 years. We find a close orbit of 5d.9525days (e=0.26) and a wide orbit of approximately 1082d days (e=0.23). The orbital parameters of the triple star and a spectrum synthesis lead us to conclude that the system is composed of two early-type B stars and a low-mass pre-main-sequence star rather than containing an ultra-massive white dwarf as claimed before. Our proposed configuration is compatible with population synthesis. The radial velocity variations of the primary allow us to confirm the presence of at least one pulsation mode with frequency 4.679410 c d-1 which is subject to the light-time effect in the triple system. A detailed analysis of the complex line-profile variations is described in a subsequent paper

    On the Hα\alpha emission from the β\beta Cephei system

    Get PDF
    Be stars, which are characterised by intermittent emission in their hydrogen lines, are known to be fast rotators. This fast rotation is a requirement for the formation of a Keplerian disk, which in turn gives rise to the emission. However, the pulsating, magnetic B1IV star β\beta Cephei is a very slow rotator that still shows Hα\alpha emission episodes like in other Be stars, contradicting current theories. We investigate the hypothesis that the Hα\alpha emission stems from the spectroscopically unresolved companion of β\beta Cep. Spectra of the two unresolved components have been separated in the 6350-6850\AA range with spectro-astrometric techniques, using 11 longslit spectra obtained with ALFOSC at the Nordic Optical Telescope, La Palma. We find that the Hα\alpha emission is not related to the primary in β\beta Cep, but is due to its 3.4 magnitudes fainter companion. This companion has been resolved by speckle techniques, but it remains unresolved by traditional spectroscopy. The emission extends from about -400 to +400 km s1^{-1}. The companion star in its 90-year orbit is likely to be a classical Be star with a spectral type around B6-8. By identifying its Be-star companion as the origin of the Hα\alpha emission behaviour, the enigma behind the Be status of the slow rotator β\beta Cep has been resolved.Comment: 4 pages, 3 figures. Accepted by A&A Letter

    Finding non-eclipsing binaries through pulsational phase modulation

    Get PDF
    We present a method for finding binaries among pulsating stars that were observed by the Kepler Mission. We use entire four-year light curves to accurately mea- sure the frequencies of the strongest pulsation modes, then track the pulsation phases at those frequencies in 10-d segments. This produces a series of time-delay measurements in which binarity is apparent as a periodic modulation whose amplitude gives the projected light travel time across the orbit. Fourier analysis of this time-delay curve provides the pa- rameters of the orbit, including the period, eccentricity, angle of ascending node and time of periastron passage. Differentiating the time-delay curve yields the full radial-velocity curve directly from the Kepler photometry, without the need for spectroscopy. We show examples with delta Scuti stars having large numbers of pulsation modes, including one system in which both components of the binary are pulsating. The method is straightfor- ward to automate, thus radial velocity curves can be derived for hundreds of non-eclipsing binary stars from Kepler photometry alone. This contribution is based largely upon the work by Murphy et al. [1], describing the phase-modulation method in detail

    Observation and modelling of main-sequence star chromospheres – XIX. FIES and FEROS observations of dM1 stars

    Get PDF
    We present 187 high-resolution spectra for 62 different M1 dwarfs from observations obtained with the FIbre-fed Echelle Spectrograph (FIES) on the Nordic Optical Telescope (NOT) and from observations with the Fibre-fed Extended Range Echelle Spectrograph (FEROS) from the European Southern Observatory (ESO) data base. We also compiled other measurements available in the literature.We observed two stars, Gl 745A and Gl 745B, with no Ca ii line core emission and Hα line equivalent widths (EWs) of only 0.171 and 0.188 Å, respectively. We also observed another very low activity M1 dwarf, Gl 63, with an Hα line EW of only 0.199 Å. These are the lowest activity M dwarfs ever observed and are of particular interest for the non-local thermodynamic equilibrium radiative transfer modelling of M1 dwarfs. Thanks to the high signal-to-noise ratio of most of our spectra, we were able to measure the Ca ii H&amp;K full width at half-maximum (FWHM) for most of our stars. We find good correlations between the FWHM values and the mean Ca ii line EW for dM1 stars. Then the FWHM seems to saturate for dM1e stars. Our previous models of M1 dwarfs can reproduce the FWHM for dM1e stars and the most active dM1 stars, but fail to reproduce the observations of lower activity M1 dwarfs. We believe this is due to an effect of metallicity. We also investigate the dependence of the Hα line FWHM as a function of its EW. We find that the models globally agree with the observations including subwarfs, but tend to produce too narrow profiles for dM1e stars. We re-investigate the correlation between the Ca ii line mean EW and the absolute magnitude. With our new data that notably include several M1 subdwarfs, we find a slightly different and better correlation with a slope of −0.779 instead of −0.909. We also re-investigate the variations of the Hα line EW as a function of radius and find that the EW increases continuously with increasing radius. This confirms our previous finding that the level of magnetic activity in M1 dwarfs increases with the radius. For the first time, we investigate the Wilson–Bappu correlation for a given spectral type. We find a rather linear correlation for stars of absolute magnitude greater than 9.6, but below this value the FWHM seems to saturate. In fact, we show that these Wilson–Bappu type correlations are activity–FWHM correlations and are due to the diminishing column mass of the transition region with decreasing activity level
    corecore