43 research outputs found

    Forever young: How to control the elongation, differentiation, and proliferation of cells using nanotechnology

    Get PDF
    Within the emerging field of stem cells there is a need for an environment that can regulate cell activity, to slow down differentiation or proliferation, in vitro or in vivo while remaining invisible to the immune system. By creating a nanoenvironment surrounding PC12 cells, Schwann cells, and neural precursor cells (NPCs), we were able to control the proliferation, elongation, differentiation, and maturation in vitro. We extended the method, using self-assembling nanofiber scaffold (SAPNS), to living animals with implants in the brain and spinal cord. Here we show that when cells are placed in a defined system we can delay their proliferation, differentiation, and maturation depending on the density of the cell population, density of the matrix, and the local environment. A combination of SAPNS and young cells can be implanted into the central nervous system (CNS), eliminating the need for immunosuppressants. Copyright © 2009 Cognizant Comm. Corp.published_or_final_versio

    Physiological traits of the symbiotic bacterium Teredinibacter turnerae isolated from the mangrove shipworm Neoteredo reynei

    Get PDF
    Nutrition in the Teredinidae family of wood-boring mollusks is sustained by cellulolytic/nitrogen fixing symbiotic bacteria of the Teredinibacter clade. The mangrove Teredinidae Neoteredo reynei is popularly used in the treatment of infectious diseases in the north of Brazil. In the present work, the symbionts of N. reynei, which are strictly confined to the host's gills, were conclusively identified as Teredinibacter turnerae. Symbiont variants obtained in vitro were able to grow using casein as the sole carbon/nitrogen source and under reduced concentrations of NaCl. Furthermore, cellulose consumption in T. turnerae was clearly reduced under low salt concentrations. As a point of interest, we hereby report first hand that T. turnerae in fact exerts antibiotic activity. Furthermore, this activity was also affected by NaCl concentration. Finally, T. turnerae was able to inhibit the growth of Gram-negative and Gram-positive bacteria, this including strains of Sphingomonas sp., Stenotrophomonas maltophilia, Bacillus cereus and Staphylococcus sciuri. Our findings introduce new points of view on the ecology of T. turnerae, and suggest new biotechnological applications for this marine bacterium

    Non-Steroidal Anti-Inflammatory Drugs and Cognitive Function: Are Prostaglandins at the Heart of Cognitive Impairment in Dementia and Delirium ?

    Get PDF
    Studies of non-steroidal anti-inflammatory drugs (NSAIDs) in rheumatoid arthritis imply that inflammation is important in the development of Alzheimer’s disease (AD). However, these drugs have not alleviated the symptoms of AD in those who have already developed dementia. This suggests that the primary mediator targeted by these drugs, PGE2, is not actively suppressing memory function in AD. Amyloid-β oligomers appear to be important for the mild cognitive changes seen in AD transgenic mice, yet amyloid immunotherapy has also proven unsuccessful in clinical trials. Collectively, these findings indicate that NSAIDs may target a prodromal process in mice that has already passed in those diagnosed with AD, and that synaptic and neuronal loss are key determinants of cognitive dysfunction in AD. While the role of inflammation has not yet become clear, inflammatory processes definitely have a negative impact on cognitive function during episodes of delirium during dementia. Delirium is an acute and profound impairment of cognitive function frequently occurring in aged and demented patients exposed to systemic inflammatory insults, which is now recognised to contribute to long-term cognitive decline. Recent work in animal models is beginning to shed light on the interactions between systemic inflammation and CNS pathology in these acute exacerbations of dementia. This review will assess the role of prostaglandin synthesis in the memory impairments observed in dementia and delirium and will examine the relative contribution of amyloid, synaptic and neuronal loss. We will also discuss how understanding the role of inflammatory mediators in delirious episodes will have major implications for ameliorating the rate of decline in the demented population

    Análisis de las Estrategias Metodológicas implementadas por el docente en el desarrollo del proceso de enseñanza- aprendizaje en la disciplina de Geografía e Historia de Nicaragua y su Didáctica en los alumnos/as de Primer año “B” del turno regular de Formación Inicial Docente en la Escuela Normal Central de Managua Alesio Blandón Juárez durante el I semestre del Curso Escolar 2016

    Get PDF
    El presente trabajo de investigación tiene como finalidad analizar la efectividad que tienen las Estrategias Metodológicas implementadas por el docente en el desarrollo del proceso de enseñanza- aprendizaje en la disciplina de Geografía de Nicaragua y su Didáctica en los alumnos/as de Primer año “B” del turno regular de Formación Inicial Docente en la Escuela Normal Central de Managua Alesio Blandón Juárez durante el I semestre del Curso Escolar 2016. Dicho trabajo de investigación tiene un enfoque naturista o cualitativo, es una vía de transformación social, a través de la cual el ser humano descubre la realidad que le rodea, determina los medios y procedimientos para actuar sobre ella y transformarla de acuerdo a una intensión social. Los procesos de investigación cualitativa, tienen como finalidad primordial la generación y construcción de conocimientos que contribuyen al desarrollo social y personal de cada uno de los miembros de una comunidad. La fase de recolección de los datos de la investigación desarrollada, se realizó de dos formas: una información que se recogió mediante la observación directa del comportamiento de los informantes claves y una información que se obtuvo mediante la interrogación de algunos informantes claves. Para ello, primeramente el investigador realizo una inmersión en el campo de trabajo, con el propósito de identificar los lugares adecuados para recoger y producir la información necesaria y requerid

    Molecular restoration of the body: nano neuro knitting for brain repair

    No full text

    Using nanotechnology to design potential therapies for CNS regeneration

    No full text
    The nanodelivery of therapeutics into the brain will require a step-change in thinking; overcoming the blood brain barrier is one of the major challenges to any neural therapy. The promise of nanotechnology is that the selective delivery of therapeutics can be delivered through to the brain without causing secondary damage. There are several formidable barriers that must be overcome in order to achieve axonal regeneration after injury in the CNS. The development of new biological materials, in particular biologically compatible scaffolds that can serve as permissive substrates for cell growth, differentiation and biological function is a key area for advancing medical technology. This review focuses on four areas: First, the barriers of delivering therapies to the central nervous system and how nanotechnology can potentially solve them; second, current research in neuro nanomedicine featuring brain repair, brain imaging, nanomachines, protein misfolding diseases, nanosurgery, implanted devices and nanotechnologies for crossing the blood brain barrier, third, health and safety issues and fourth, the future of neuro nanomedicine as it relates to the pharmaceutical industry. © 2007 Bentham Science Publishers Ltd.link_to_subscribed_fulltex

    Differential induction of c-Jun and Fos-like proteins in rat hippocampus and dorsal striatum after training in two water maze tasks

    No full text
    Research examining the neuroanatomical bases of memory in mammals suggests that the hippocampus and dorsal striatum are parts of independent memory systems that mediate "cognitive" and stimulus-response "habit" memory, respectively. At the molecular level, increasing evidence indicates a role for immediate early gene (IEG) expression in memory formation. The present experiment examined whether acquisition of cognitive and habit memory result in differential patterns of IEG protein product expression in these two brain structures. Adult male Long-Evans rats were trained in either a hippocampal-dependent spatial water maze task, or a dorsal striatal-dependent cued water maze task. Ninety minutes after task acquisition, brains were removed and processed for immunocytochemical procedures, and the number of cells expressing Fos-like immunoreactivity (Fos-like-IR) and c-Jun-IR in sections from the dorsal hippocampus and the dorsal striatum were counted. In the dorsal hippocampus of rats trained in the spatial task, there were significantly more c-Jun-IR pyramidal cells in the CA1 and CA3 regions, relative to rats that had acquired the cued task, yoked controls (free-swim), or naïve (home cage) rats. Relative to rats receiving cued task training and control conditions, increases in Fos-like IR were also observed in the CA1 region of rats trained in the spatial task. In rats that had acquired the cued task, patches of c-Jun-IR were observed in the posteroventral striatum; no such patches were evident in rats trained in the spatial task, yoked-control rats, or naïve rats. The results demonstrate that IEG protein product expression is up-regulated in a task-dependent and brain structure-specific manner shortly after acquisition of cognitive and habit memory tasks. © 2005 Elsevier Inc. All rights reserved.link_to_subscribed_fulltex
    corecore