12,716 research outputs found

    Novel convolution-based signal processing techniques for an artificial olfactory mucosa

    Get PDF
    As our understanding of the human olfactory system has grown, so has our ability to design artificial devices that mimic its functionality, so called electronic noses (e-noses). This has led to the development of a more sophisticated biomimetic system known as an artificial olfactory mucosa (e-mucosa) that comprises a large distributed sensor array and artificial mucous layer. In order to exploit fully this new architecture, new approaches are required to analyzing the rich data sets that it generates. In this paper, we propose a novel convolution based approach to processing signals from the e-mucosa. Computer simulations are performed to investigate the robustness of this approach when subjected to different real-world problems, such as sensor drift and noise. Our results demonstrate a promising ability to classify odors from poor sensor signals

    Increasing Adult\u27s Awareness of the Importance of End-Of-Life Care Discussions

    Get PDF
    For many American families, end-of-life care is often not discussed, until advanced illness or injury has fully disrupted everyday life. There are many benefits to discussing end-of-life care prior to any medical complications. Research has shown that individuals who plan their end-of-life processes with a hospice service provider and family members report a higher quality of death than individuals receiving common health care during their final six months of life. In order to make families and friends more comfortable with end-of-life discussions, I will conduct two one-hour educational sessions to students at California State University, Monterey Bay

    Observational Limits for Lidar, Radar and Airglow Imager Measurements of Gravity Wave Parameters

    Get PDF
    By examining the observational limits and biases for lidar, radar, and airglow imager measurements of middle atmosphere gravity waves, we provide plausible explanations for the characteristics of the monochromatic wave parameters that have been reported during the past decade. The systematic dependencies of vertical and horizontal wavelength on wave period, reported in many lidar and some radar studies, are associated with diffusive damping. The prominent waves with the largest amplitudes, most often observed by lidars and radars, are those with vertical phase speeds near the diffusive damping limit. The narrow range of horizontal phase velocities of the waves seen by OH imagers is a consequence of the combined effects of the gravity wave spectrum and the OH layer response to wave perturbations. The strongest airglow fluctuations are associated with waves having vertical wavelengths comparable to the width of the OH layer. These waves have fast horizontal phase speeds near 70 m/s. Simple formulas which describe the regions of the wave spectrum observed by each instrument are derived and compared with published data. Lidars, radars, and imagers are often most sensitive to waves in largely different regions of the spectrum so that their measurements are truly complementary. However, these ground-based techniques are often incapable of observing the large-scale waves with periods longer than about 5 hours and both long vertical (\u3e15 km) and horizontal (\u3e1000 km) wavelengths. Spaceborne instruments, such as the high-resolution Doppler imager (HRDI) and wind imaging interferometer (WINDII) on UARS, are the techniques most likely to provide the key observations of the low wavenumber, low-frequency region of the gravity wave spectrum

    A note on the forecast performance of temporal aggregation

    Get PDF
    Earlier research on the effects of nonoverlapping temporal aggregation on demand forecasting showed the benefits associated with such an approach under a stationary AR(1) or MA(1) processes for decision making conducted at the disaggregate level. The first objective of this note is to extend those important results by considering a more general underlying demand process. The second objective is to assess the conditions under which aggregation may be a preferable approach for improving decision making at the aggregate level as well. We confirm the validity of previous results under more general conditions, and we show the increased benefit resulting from forecasting by temporal aggregation at lower frequency time units

    Probabilistic modeling of one dimensional water movement and leaching from highway embankments containing secondary materials

    Get PDF
    Predictive methods for contaminant release from virgin and secondary road construction materials are important for evaluating potential long-term soil and groundwater contamination from highways. The objective of this research was to describe the field hydrology in a highway embankment and to investigate leaching under unsaturated conditions by use of a contaminant fate and transport model. The HYDRUS2D code was used to solve the Richards equation and the advection–dispersion equation with retardation. Water flow in a Minnesota highway embankment was successfully modeled in one dimension for several rain events after Bayesian calibration of the hydraulic parameters against water content data at a point 0.32 m from the surface of the embankment. The hypothetical leaching of Cadmium from coal fly ash was probabilistically simulated in a scenario where the top 0.50 m of the embankment was replaced by coal fly ash. Simulation results were compared to the percolation equation method where the solubility is multiplied by the liquid-to-solid ratio to estimate total release. If a low solubility value is used for Cadmium, the release estimates obtained using the percolation/equilibrium model are close to those predicted from HYDRUS2D simulations (10–4–10–2 mg Cd/kg ash). If high solubility is used, the percolation equation over predicts the actual release (0.1–1.0 mg Cd/kg ash). At the 90th percentile of uncertainty, the 10-year liquid-to-solid ratio for the coal fly ash embankment was 9.48 L/kg, and the fraction of precipitation that infiltrated the coal fly ash embankment was 92%. Probabilistic modeling with HYDRUS2D appears to be a promising realistic approach to predicting field hydrology and subsequent leaching in embankments

    Using a Team Approach to Redesign the First Course in a Master’s LevelInstructional Design and Performance Improvement Program

    Get PDF
    The first course in the Instructional Design and Performance Technology Program at Franklin University is IDPT600 – Principles of Learning Theory. This program began two years ago using a cohort format. The first course ran several times during 2011 and 2012. The original design served us well but, as the rest of the program was being completed, we realized that we had several opportunities to improve IDPT600. In addition, feedback from faculty and students provided the impetus to redesign the course and make the learning opportunities for our students even more robust. This poster presentation describes the unique team process used to revise IDPT600. We also describe the course content and show how it better prepares our students for graduate studies and professional growth, aligns with industry standards, and features real world application.https://fuse.franklin.edu/forum-2013/1005/thumbnail.jp

    The host galaxies of luminous radio-quiet quasars

    Full text link
    We present the results of a deep K-band imaging study which reveals the host galaxies around a sample of luminous radio-quiet quasars. The K-band images, obtained at UKIRT, are of sufficient quality to allow accurate modelling of the underlying host galaxy. Initially, the basic structure of the hosts is revealed using a modified Clean deconvolution routine optimised for this analysis. 2 of the 14 quasars are shown to have host galaxies with violently disturbed morphologies which cannot be modelled by smooth elliptical profiles. For the remainder of our sample, 2D models of the host and nuclear component are fitted to the images using the chi-squared statistic to determine goodness of fit. Host galaxies are detected around all of the quasars. The reliability of the modelling is extensively tested, and we find the host luminosity to be well constrained for 9 quasars. The derived average K-band absolute K-corrected host galaxy magnitude for these luminous radio-quiet quasars is =-25.15+/-0.04, slightly more luminous than an L* galaxy. The spread of derived host galaxy luminosities is small, although the spread of nuclear-to-host ratios is not. These host luminosities are shown to be comparable to those derived from samples of quasars of lower total luminosity and we conclude that there is no correlation between host and nuclear luminosity for these quasars. Nuclear-to-host ratios break the lower limit previously suggested from studies of lower nuclear luminosity quasars and Seyfert galaxies. Morphologies are less certain but, on the scales probed by these images, some hosts appear to be dominated by spheroids but others appear to have disk-dominated profiles.Comment: 16 pages, 8 figures, revised version to be published in MNRA

    Terdiurnal Oscillations in OH Meinel Rotational Temperatures for Fall Conditions at Northern Mid-latitude Sites

    Get PDF
    High‐precision (∼0.5 K) measurements of OH Meinel (M) (6,2) rotational temperatures above the Bear Lake Observatory, UT (42°N, 112°W) during October 1996 have revealed an interesting and unexpected mean nocturnal pattern. Ten quality nights (\u3e100 h) of data have been used to form a mean night for autumnal, near‐equinoctial conditions. The mean temperature and RMS variability associated with this mean night were 203 ± 5 K and 2.4 K, respectively, and compare very favorably with expectations based on Na‐lidar measurements of mean tidal temperature perturbations over Urbana, IL (40°N, 88°W) during the fall 1996. Furthermore, this comparison shows that the 8‐h tide was the dominant source of the mean nocturnal temperature variability in the OH M region during this period. Additional data, obtained at Fort Collins, CO (41°N, 105°W) in November 1997, illustrate the occurrence of an 8‐h component of OH temperature variability about two months after the equinox and show that daily amplitudes as high as ≅15 K are possible

    Maximum Penetration of Atmospheric Gravity Waves Observed During ALOHA-93

    Get PDF
    Atmospheric Gravity Waves (AGWs) are subject to altitude propagation limits which are governed by the diffusion processes. Diffusion times and scales which exceed the wave period and wavelength define the limiting domain for AGWs. An expression is presented which defines the upper altitude limit to which AGWs can propagate given vertical diffusion constraints of the atmosphere. Airglow, lidar, and radar measurements are combined to characterize the intrinsic AGW parameters in the 80–105 km altitude region. A subset of AGWs (17) observed by airglow imagers during the ALOHA‐93 were made when simultaneous wind measurements were available and intrinsic wave parameters were calculated. The limiting altitude of propagation for these measured monochromatic waves is calculated to range from 110–150 km (with a mean limiting altitude of 130 km). The altitude limit is necessarily lower for waves with short vertical wavelengths and longer intrinsic periods. This observation is important for a large number of issues including energetic considerations regarding thermospheric heating in models which consider upward propagating AGWs (and energy flux) of tropospheric origin. This limited data base should be expanded for statistical significance in future work
    corecore