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A Note on the Forecast Performance of Temporal Aggregation  1 
 2 
Abstract: Earlier research on the effects of non-overlapping temporal aggregation on demand forecasting 3 
showed the benefits associated with such an approach under a stationary AR(1) or MA(1) processes for decision 4 
making conducted at the disaggregate level. The first objective of this note is to extend those important results by 5 
considering a more general underlying demand process. The second objective is to assess the conditions under 6 
which aggregation may be a preferable approach for improving decision making at the aggregate level as well. 7 
We confirm the validity of previous results under more general conditions and we show the increased benefit 8 
resulting from forecasting by temporal aggregation at lower frequency time units.  9 
 10 
Keywords: Demand Forecasting, Temporal Aggregation, Stationary Processes, Single Exponential Smoothing 11 

1. INTRODUCTION  12 

Rostami-Tabar et al. [11] considered the effect of non-overlapping temporal aggregation on demand 13 
forecasting. They assumed that the disaggregate series follow either an Auto-Regressive process of 14 
order one, AR(1) or a first order Moving Average process, MA(1) and the procedure employed for 15 
extrapolation purposes is the Single Exponential Smoothing, SES. (For a survey on the application of 16 
exponential smoothing methods see Gardner [4]). They compared the variance of the forecast error (or 17 
equivalently, the mean square error (MSE)) obtained based on forecasting using the aggregate demand 18 
to that resulting from the consideration of the disaggregate data. Comparisons were performed at the 19 
original (disaggregate) demand level. In this case, the aggregation approach works as follows: first 20 
aggregate demand data in non-overlapping time buckets; then extrapolate requirements using SES at the 21 
aggregate demand level; and, finally, disaggregate the aggregate forecasts at the original frequency level 22 
to produce a one-step-ahead forecast. The disaggregation approach relies upon a straight one-step-ahead 23 
extrapolation using SES at the original frequency level (i.e. forecasting in the classical way).  24 

The researchers concluded that performance improvements related to the aggregation approach are a 25 
function of the aggregation level, the smoothing constant, and the process parameters. They found that 26 
for high levels of positive auto-correlation in the original series, the aggregation approach may be 27 
outperformed by the classical one for both processes considered. In contrast, high levels of aggregation 28 
and low values of the SES smoothing constant lead to a superior performance of the aggregation 29 
approach.  30 

The first objective of this note is to extend the work of Rostami-Tabar et al. [11] to a more general 31 
underlying demand process. We do so by assuming that the disaggregate series follow an Auto-32 
Regressive Moving Average process of order one, ARMA(1,1). An ARMA model often fits demand 33 
time series significantly better than pure AR or MA models [3]. In addition, ARMA processes have 34 
been found to provides good fit for demands of long lifecycle goods such as fuel, food products, 35 
machine tools, etc [2, 9]. The results presented in this Note are more general than those presented by 36 
Rostami-Tabar et al. [11], as both the AR(1) and MA(1) processes are special cases of the ARMA(1,1) 37 
process. 38 

The second objective is to derive results when performance is measured at the aggregate rather than 39 
disaggregate (original series) level. This is important in many operational management decisions such 40 
as inventory control, for example, where temporal aggregation considerations over the lead time (or lead 41 
time plus review period) drive replenishments. Aggregation over the prevalent aggregation level is a 42 
necessity and not an option [8, 10, 12, 16]. The aggregation level needs to match the forecast horizon 43 
and performance needs to be evaluated at that level. A key question then to be answered is: should we 44 
forecast at the original disaggregate level and then obtain aggregate forecasts or should we temporally 45 
aggregate demand and extrapolate directly at that level? That is, when comparisons are undertaken at 46 
the aggregate level, the aggregation approach works as follows: first aggregate demand data in non-47 
overlapping time buckets; then extrapolate requirements using SES at the aggregate demand level. The 48 
disaggregation approach in contrast relies upon a straight one-step-ahead extrapolation using SES at the 49 
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original frequency level followed by the multiplication of that forecast (by the length of the aggregation 1 
level) to obtain a forecast at the aggregate level. So if at the original disaggregate level we have monthly 2 
data, and the lead time is, for example, 3 months, then the one-step-ahead monthly forecast needs to be 3 
multiplied by 3 (assuming stationary demand) in order to produce an aggregate lead time demand 4 
forecast. 5 

Temporal aggregation is an intuitively appealing approach to reduce demand uncertainty and it has 6 
been shown, under certain conditions, to lead to performance improvements when forecasting is 7 
required at the original (disaggregate) one-step-ahead level. Extending these findings to multiple-steps-8 
ahead or aggregation level estimates and under a general stationary framework assumption, and 9 
developing insights into the conditions under which aggregation may or may not add any value to the 10 
forecasting process, should be of great value to both the theory and practice of forecasting. 11 

The remainder of this Note is organized as follows. In Section 2 we present the assumptions behind 12 
this work and we derive MSE expressions at both the disaggregate and aggregate level. In Section 3, the 13 
impact of the process and control parameters on the superiority of each approach is analyzed. The 14 
conditions that determine the comparative performance of the two approaches at both levels of 15 
comparison are determined in Section 4 followed by an empirical analysis, conducted in Section 5, and 16 
the conclusions of this work, offered in Section 6. 17 

2. ASSUMPTIONS AND MSE DERIVATIONS 18 

2.1. Notations and assumptions 19 
The following notation is used for the remainder of the paper. 20 
m: Aggregation level, i.e. number of periods considered to build the block of aggregated demand. 21 

:tε Independent random variables for non-aggregated demand in period t, normally distributed with 22 
zero mean and variance 2σ  23 
α : Smoothing constant used in Single Exponential Smoothing method before aggregation, 10 ≤<α  24 
β : Smoothing constant used in Single Exponential Smoothing method after aggregation, 10 ≤< β  25 

φ : Autoregressive parameter before aggregation, 1<φ   26 

θ  : Moving average parameter before aggregation, 1<θ  27 

µ  : Expected value of non-aggregated demand in any time period 28 

We assume that the disaggregate demand series td  follows an ARMA(1,1) process that can be 29 
mathematically written in period t by (1). 30 

( ) .1 11 −− −++−= tttt dd θεφεφµ  (1) 
When demand follows an ARMA(1,1) process the auto-covariance is [1]: 31 
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where kγ is defined as the auto-covariance of lag k. 32 
For different combinations of the process parameters, the resulting underlying structure changes 33 

considerably. Table 1 presents the auto-correlation structure for different process parameters; this helps 34 
to demonstrate how the process behaves and can be useful when interpreting the results of the 35 
forthcoming analysis. 36 

Table 1: Auto-correlation of ARMA (1,1) process 37 
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Case Process parameter Auto-correlation 
1 0<φ <1, -1<θ<0 Always positive , 0<Auto-correlation lag1<1, 
2 -1<φ <0, for any θ Oscillation between positive and negative values 
3 0<φ <1, 0<θ<1 and φ>θ Always positive, 0<Auto-correlation lag1<1 
4 0<φ <1, 0<θ<1 and φ<θ Always negative, -0.5<Auto-correlation lag1<0 

 1 

2.2. MSE derivation at the disaggregate level 2 
In this section, the MSE of the forecasts resulting from the disaggregate and the aggregate demand 3 

data is derived when the comparison is undertaken at the disaggregate level. In other words, one step-4 
ahead forecasts, tf  , are considered. 5 

The MSE before aggregation, MSEBA, can be written as follows: 6 
( ) ( ) ( ) ( ),,2 ttttttBA fdCovfVardVarfdVarMSE −+=−=  (3) 

As shown in Appendix A, the expression of MSEBA is:   7 
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The MSE after aggregation, MSEAA, is derived in Appendix A (where TF  is the forecast produced 8 
using the aggregated data and mFT  the forecast at the disaggregate level). 9 
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This may be expressed as follows: 
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2.3. MSE derivation at the aggregate level 10 
In this section, the MSE for both the aggregation and the non-aggregation approaches is derived at the 11 

aggregate level. The MSEBA for the comparison at the aggregate level is obtained as follows: Firstly, one 12 
step ahead demand forecasts are generated based on the SES method. Then, the results are multiplied by 13 
the aggregation level m. This results in a forecast (i.e. cumulative m-step-ahead estimate) at the 14 
aggregate level: 15 

( ) ( ) ( ) ( ),,22
tTtTtTBA fDmCovfVarmDVarmfDVarMSE −+=−=      (7) 

The expression of MSEBA is derived in Appendix B as follows:  16 
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Now, the MSE resulting from the aggregate data is considered. Disaggregate demand is first 1 
aggregated to get low frequency demand. Then, the aggregate forecasts are generated based on the SES 2 
forecasting method. The MSEAA  is defined as: 3 

( ) ( ) ( ) ( ),,2 TTTTTTAA FDCovFVarDVarFDVarMSE −+=−=  (9) 
The MSEAA is derived in Appendix B and it is as follows:   4 
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3. IMPACT OF THE PARAMETERS ON THE PERFROMANCE 5 

In this section the effect of the parameters on the ratio AABA MSEMSE is analyzed, which we use as a 6 
measure of the superiority of each approach. 7 

Figure 1 shows the impact of the parameters on the ratio of AABA MSEMSE  when the comparison is 8 
undertaken at the disaggregate level. This addresses the first objective of the research (as defined in 9 
page 1). In Figure 1, it is revealed that for positive values of θ and negative values of φ, the aggregation 10 
approach always yields more accurate forecasts than the non-aggregation one. However, when θ  takes 11 
negative values and φ takes positive values, the comparative results are reversed. Additionally, when 12 
both θ and φ are positive and θ <φ , the non-aggregation approach also performs better than the 13 
aggregation one. 14 

By referring to Table 1, it can be seen that the latter cases correspond to a high positive auto-15 
correlation, not only for lag 1 but also for higher time lags. On the contrary, in the former case, the auto-16 
correlation is not always positive; either it is negative or it oscillates between positive and negative 17 
values. Therefore, the outperformance of the non-aggregation approach can be attributed to the high 18 
positive auto-correlation values. As it can be seen in Figure 1, for highly positive values of auto-19 
correlation, no level of aggregation may improve the accuracy of forecasts. This is generally true 20 
regardless of the control parameter values.  21 

The results of this study generally confirm the previous work conducted by Rostami-Tabar et al. [11]. 22 
The results are very similar to the case of AR(1) demand process. However, when the aggregation 23 
approach works, there is a slightly increased benefit for an ARMA(1,1) process compared to the AR(1). 24 
The difference between the aggregation performance on the MSE under the ARMA(1,1) and the AR(1) 25 
process is less than 1%. 26 

Figure 2 presents the impact of the parameters on the ratio of AABA MSEMSE  when the comparison is 27 
undertaken at the aggregate level, an important scenario that has not been considered by Rostami-Tabar 28 
et al.[11]. This addresses the second objective of the research. The results in Figure 2 show that when 29 
the aggregation level is high (higher values of m) the aggregation approach always outperforms the non-30 
aggregation one. However, when the aggregation level is short (lower values of m), the superiority 31 
under concern is a function of the parameter values. In these cases, the non-aggregation approach 32 
performs better than the aggregation one when the auto-correlation is highly positive. Otherwise, the 33 
aggregation approach provides more accurate results. 34 

The analysis also shows that for a fixed value of the smoothing constants, increasing the aggregation 35 
level improves the accuracy of the aggregation approach. However, the percentage improvement is very 36 
low (less than 1%). Additionally, for a fixed aggregation level m and smoothing constant before 37 
aggregation α, the performance of the aggregation approach decreases as the β value increases. This is 38 
valid at both levels of comparison (aggregate and disaggregate). 39 

 40 
m=2 m=12 
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Figure 1: Impact of  m, , θ, φ, α and β on the ratio of MSE at disaggregate level: 01.0,1.0 == βα (top)  1 

 1.0,1.0 == βα (Bottom) 2 
m=2 m=12 

  

  
Figure 2: Impact of  m, θ, φ, α and β on the ratio of MSE at aggregate level: 01.0,1.0 == βα (top)  3 

 1.0,1.0 == βα (bottom) 4 
 5 

What may be concluded at the end of this section is: i) the validity of the earlier results by Rostami-6 
Tabar et al. [11] when the objective is to compare the forecasts at the disaggregate level; ii) the slightly 7 
improved performance of the aggregation approach for an ARMA(1,1) demand process compared to an 8 
AR(1) or MA(1) process. It is found that the aggregation approach always outperforms the non-9 
aggregation one when the comparison is undertaken at the aggregate level and the aggregation level is 10 
high. However, for a lower aggregation level, the superiority is a function of the autocorrelation values. 11 
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The investigation reveals that the benefits of using the aggregation approach to produce aggregate 1 
(horizon) forecasts is more pronounced than its utilization at the disaggregate level. The further into the 2 
future an estimate is required, the forecast errors associated with the original disaggregate data become 3 
larger compared to the temporally aggregate series. In the next section, we determine theoretically the 4 
conditions under which each approach outperforms the other. 5 

4. COMPARATIVE PERFORMANCE 6 

Having conducted a sensitivity analysis, we now identify analytically the conditions under which 7 
each approach outperforms the other at both levels of comparison. To show the conditions under which 8 
the aggregation approach outperforms the non-aggregation approach, we set 1>AABA MSEMSE .  9 

If the time series of the disaggregate demand follows an ARMA(1,1) process where  10 <<φ , then 10 
the conditions under which one approach outperforms the other at the disaggregate level of comparison 11 
can be obtained. These conditions are summarized in the selection procedure discussed in Appendix C. 12 

THEOREM 1: If the time series of the disaggregate demand follow an ARMA(1,1) process where  13 
01 ≤<− φ , and the comparison is undertaken at the disaggregate level, then the following conditions 14 

determine the superiority of each approach :  15 
  If 1ββ < , the aggregation approach provides more accurate forecasts.  16 

  If 1ββ = , both approaches perform equally.  17 

  Otherwise, the non-aggregation approach works better. 18 

where 1β  is as defined in (C-4). 19 
PROOF: The proof of Theorem 1 is given in Appendix D. 20 

 21 
Next, the conditions under which each approach provides more accurate forecasts at the aggregate 22 

level of comparison are determined. The ratio of MSEBA/MSEAA for comparison at the aggregate level is 23 
determined by dividing (8) into (10). If the time series of the disaggregate demand follow an 24 
ARMA(1,1) process where  10 <<φ , and the comparison is undertaken at the aggregate level, then the 25 
superiority conditions of each approach can be obtained. These conditions are summarized in a selection 26 
procedure presented in Appendix E. 27 

THEOREM 2: If the time series of the disaggregate demand follows an ARMA(1,1) process where  28 
01 ≤<− φ , and the comparison is conducted at the aggregate level, then:  29 

  If 1ββ < , the aggregation provides more accurate forecasts.  30 

  If 1ββ = , both approaches perform equally.  31 

  Otherwise, the non-aggregation approach works better. 32 

where 1β  is defined in (E-3). 33 
PROOF: The proof of Theorem 2 is given in Appendix F. 34 
 35 
Theorems 1 and 2 show that when the autoregressive and the moving average parameters satisfy 36 

01 ≤<− φ  , then for a given value of the smoothing constant,α, and the aggregation level, m, there is 37 
always a value of β for which the aggregation approach provides more accurate forecasts. 38 
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5. EMPIRICAL ANALYSIS 1 

In this section, we assess the empirical validity of the main theoretical findings of this research. The 2 
demand dataset available for the purposes of this research consists of weekly sales data over a period of 3 
two years for 1,798 stock keeping units (SKUs) of a major European supermarket located in Germany; 4 
5.1% of the SKUs (91 series) were identified as ARMA(1,1) by using the R package.  5 

In Table 2, we summarize the characteristics of the SKUs relevant to our study by indicating the 6 
estimated parameters for the ARMA(1,1) process.  7 

 8 
Table 2: Processes present in the empirical data set, ARIMA(1,0,1) process 

θ intervals φ intervals Average of θ Average of φ Average lag1Auto-
correlation No. of SKUs 

[0.1,0.5[ [0.6,1[ 0.356 0.771 0.5211 23 
[0.5,0.9[ [0.6,1[ 0.605 0.838 0.3260 39 

[-0.2,-0.5[ [0.1,0.5[ -0.328 0.347 0.5631 29 
 Total number of SKUs:   91 

 9 
We must remark that θ  and φ do not cover the entire theoretically feasible range and the auto-10 

correlation of the data under consideration is positive. 11 
Figure 3a presents the results of the empirical analysis when the comparison is undertaken at the 12 

disaggregate level. Figure 3a indicates that for all values of the aggregation level m, the MSEBA is lower 13 
than the MSEAA when the optimal smoothing constant values α and β are used. Therefore, for all values 14 
of the aggregation level the non-aggregation approach outperforms the aggregation one. It should be 15 
noted that in order to facilitate presentation purposes the results are expressed based on the RMSE (root 16 
mean square error) rather than the MSE. The forecast error reduction can be as high as 8% and this is in 17 
agreement with our theoretical findings; the real data (please see Table 2) is associated with positive 18 
auto-correlation not only for lag 1 but for longer time lags as well. 19 

 20 

  
 

a) Comparison at the disaggregate level 
 

b) Comparison at the aggregate level 

Figure 3: Empirical results 21 

Figure 3b shows the results of the empirical analysis when the comparison is undertaken at the 22 
aggregate level. The results indicate that for an aggregation level m ≤ 6, the MSEBA is smaller than the 23 
MSEAA, i.e. the non-aggregation approach performs better. However, as the aggregation level increases, 24 
m > 6, the aggregation approach should be preferred. Therefore, the empirical results reveal that when 25 
the disaggregate demand follows an ARMA(1,1) process with positive auto-correlation, there is a cut-26 
off point of the aggregation level below which the non-aggregation approach performs better and above 27 
which the comparative performance is reversed. Hence, the empirical analysis confirms the results of 28 
the theoretical evaluation at both levels of comparison. However, it should be noted that even when the 29 
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aggregation approach outperforms the non-aggregation one, the difference is quite small and overall it 1 
can be concluded from the empirical investigation that there is no clear advantage of the aggregation 2 
approach.  3 

6. IMPLICATIONS AND CONCLUDING REMARKS 4 

We derived MSE expressions to facilitate the identification of conditions under which non-5 
overlapping temporal aggregation may add value in the forecasting process under the presence of 6 
stationary ARMA(1,1) demand. Performance was evaluated at both the disaggregate and aggregate level 7 
assuming extrapolation based on a Single Exponential Smoothing (SES) procedure. The main findings 8 
of this note can be summarized as follows: 9 

  In the first part of the study, the previous work of Rostami-Tabar et al. [11] is entirely 10 
confirmed. In fact, when the disaggregate series follows an ARMA(1,1) process and the 11 
comparison is conducted at the disaggregate level, then for high values of positive auto-12 
correlation in the original series the aggregation approach is outperformed by the non-13 
aggregation one. For these values, no level of aggregation improves the performance of the 14 
aggregation approach. However, when the autocorrelation value is negative, less positive or 15 
oscillates between positive and negative values, the aggregation approach is preferred. These 16 
results are very similar to those observed in the case of an AR(1) process but there is more 17 
benefit resulting from the aggregation of an ARMA(1,1) demand process compared to an 18 
AR(1) process. 19 

 The aggregation approach, when associated with higher aggregation levels and lower smoothing 20 
constant values after aggregation, β, provides more accurate forecasts. This is true for 21 
comparisons at both the disaggregate and aggregate level. 22 

 We find that there is more benefit associated with the aggregation approach when producing 23 
aggregate than disaggregate forecasts. 24 

 We reveal that when the comparison is undertaken at the aggregate level (forecast horizon), then 25 
the superiority of each approach is a function of the autocorrelation and the aggregation level. 26 
If the aggregation level is low, then: i) for highly positive auto-correlation values the non-27 
aggregation approach may perform better; ii) for less positive or negative auto-correlation 28 
values, the aggregation approach is preferred. However, if the aggregation level is high, then 29 
the aggregation approach may outperform the non-aggregation one regardless of the process 30 
and control parameters. This is a very important result for practitioners. As the horizon over 31 
which forecasts are required increases, the forecast errors associated with the original data 32 
become larger and the utilization of temporally aggregated data becomes indispensable.  33 

 Due to the high positive autocorrelation of the dataset used in the empirical investigation, overall 34 
there is no clear advantage of the aggregation approach. 35 

As far as the next steps of research are concerned, and in addition to the suggestions provided by 36 
Rostami-Tabar et al. [11], further work into the following areas would appear to be merited: i) the 37 
interface between temporal and cross-sectional aggregation [6, 7]; ii) the impact of temporal 38 
aggregation on forecasting non-stationary processes, in particular trended series [5, 13]; iii) the 39 
extension of the analysis discussed here to other real world datasets to increase confidence in the 40 
empirical validity of our findings. 41 
 42 

APPENDIX A: MSE DERIVATION-COMPARISON AT DISAGGREGATE LEVEL 43 
In order to calculate the MSEBA at the disaggregate level, we first need to calculate the covariance 44 

between the disaggregate demand and its forecast, which is given by: 45 

( ) ( ) .
1

...11),( 1
1

22
11 αφφ

αγ
γφααφγαααγ

+−
=+−+−+=tt fdCov  (A-1) 

The variance of the disaggregate forecast is calculated as follows: 46 
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Substituting (2), (A-1) and (A-2) in (3) in conjunction with the fact that ( )ktdVar −=0γ  results in the 1 
MSEBA being as follows:   2 
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When the disaggregate series follows an ARIMA(1,1) process, the aggregate series also follows an 3 
ARMA(1,1) process but with different parameter values [15] as follows: 4 
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mφφ =′  (A-6) 
Now to obtain the MSEAA at disaggregate level, we need to calculate i) the variance of aggregate 5 

forecast ii) the covariance between the disaggregate demand and the aggregate forecast. The latter can 6 
be calculated as follows: 7 
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By substituting the aggregate demand, DT-k into (A-7) we have: 8 
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By substituting (2) into (A-8) and making some simplifications, we have 9 
( ) ( ) ( )( ( ) )...11...1, 1

22
11

1 +−+−+×+++= − γφββγφβββγφφ mmm
Tt FdCov  (A-9) 

By doing some simple calculation we get 10 
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The covariance between the aggregate demand and its forecast and the variance of the aggregate 11 
forecast can be derived directly by using (A-1) and (A-2) by replacing the disaggregate parameters by 12 
the aggregate ones as the process still remains ARMA(1,1). By doing so we get: 13 

( )
φβφ

γβ
′+′−

′
=

1
, 1

TT FDCov  (A-11) 

( ) ( )
( )( )φβφβ

γββ
β

γβ
′+′−−

′−
+

−
′

=
12
12

2
10

TFVar  (A-12) 

Now by substituting (A-10) and (A-12) into (5) and then (A-4), (A-5) (A-6), and (2) into that, the 14 
MSE of the forecast after aggregation is given as follows: 15 
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APPENDIX B: MSE DERIVATION-COMPARISON AT AGGREGATE LEVEL 16 
In order to calculate the MSEBA at the aggregate level, first we need to calculate the covariance 17 

between the aggregate demand and the disaggregate forecast, which is given by: 18 
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By considering that ( )TDVar=′0γ  and substituting (A-2), (B-1) and then (A-4), (A-5), (A-6), and 1 
finally (2) into    (7), the MSEBA is as follows:  2 
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Now by considering that ( )TDVar=′0γ and substituting (A-11) and (A-12) in (9), the MSEAA at 3 
aggregate level is obtained as follows: 4 
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By substituting (A-4), (A-5) and (A-6) into (B-3), the following equation is given:   5 
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Finally, by substituting (2) into (B-4), the MSEAA becomes:   6 
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APPENDIX C: SELECTION PROCEDURE-COMPARISON AT DISAGGREGATE LEVEL 7 

By the ratio of 1>AABA MSEMSE , the quadratic function given by (C-1) should be negative 8 
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where 9 
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Moreover, by investigating the sign of (C-1) we can obtain the conditions under which 10 
AABA MSEMSE  is smaller than, equal to, and greater  than one. Now, we check whether the quadratic 11 

function (C-1) has real roots. To do so, we define the discriminant∆  of (C-1) as follows 12 
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(C-3) 

Now by using the fact that 11 <<− θ , 10 << φ  , 10 << α  and 2≥m  , the values of ∆  can be 1 
obtained. If 0<∆

 

it means (C-1) has no real roots and if 0>∆ it means (C-1) has two real roots called 2 
1β and 2β  , where  3 
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(C-5) 

It is known that the sign of the (C-1) between the two roots 1β  and 2β

 

is opposite to the sign of A, 4 
where A is the sign of the coefficient of 2β , otherwise it is that the same as the sign of A.  5 

If the discriminant 0<∆ , there are no real roots for (C-1), therefore the sign of (C-1) is equivalent to 6 
the sign of A. We can show that when 0<∆ , A is always negative, consequently (C-1) is negative which 7 
means that AABA MSEMSE  is smaller than one. 8 

However, If 0>∆ , (C-1) has two different roots 1β  and 2β . By investigating the sign of 1β , 2β  and 9 
A, we can determine the sign of (C-1) and consequently the performance superiority of each approach. 10 
The superiority conditions of each approach can be obtained by following the selection procedure: 11 
1. The procedure begins by calculating ∆  defined in (C-3). If 0<∆ then the non-aggregation approach 12 

is always superior, otherwise the values of 1β and 2β defined in (C-4) and (C-5) are calculated. 13 
2. If ( )1,02 ∈β , the value of β1 is calculated  and according to the values of β1 and β2 the following 14 

results are obtained: 15 
 If 12 βββ << , then the aggregation approach works better.  16 
 If 21 βββ == , then both approaches are identical. 17 
 If 1ββ > or 2ββ < , then disaggregate strategy works better.  Otherwise, go to 3. 18 

3. If ( )1,02 ∉β , we calculate the value of 1β : 19 
 If 1ββ < , then the aggregation approach works better. 20 
 If 1ββ = , then both approaches are identical. 21 
 If 1ββ > , then non-aggregation approach works better. 22 
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APPENDIX D: PROOF OF THEOREM 1 1 
In this case, the process parameters satisfies 11 <<− θ  and 01 ≤<− φ , It can be shown that for these 2 
parameter values ∆ defined at (C-3) is always positive and 02 <β or 12 >β . 3 
Now by considering 1β , 2β  and A that is positive for 0<θ  and negative for 0>θ , the sign of (C-1) is 4 
determined. So we have 5 
 If β2 < 0 and β1 > 0, then (C-1) is negative in the interval [β2, β1] and it is positive outside this 6 

interval. 7 
 If β2 > 1, we can show that 0 < β1 < β2 and (C-1) is positive in the interval [β1, β2] and it is 8 

negative outside this interval 9 
From the above expressions, the following results can be obtained:  10 
 If β < β1, then MSEBA/MSEAA > 1. 11 
 If β = β1, then MSEBA/MSEAA = 1. 12 
 Otherwise, MSEBA/MSEAA < 1. 13 

APPENDIX E: SELECTION PROCEDURE - COMPARISON AT AGGREGATE LEVEL  14 

Considering 1>AABA MSEMSE is equivalent to having the quadratic function (E-1) negative, which 15 
subsequently is equivalent to 16 

( ) ( )( ) ( )( )ηφβξηφφφβφ −Ψ−++−−Ψ−Ψ+Ψ− mmmmm 1222122  (E-1) 

where 17 
( ) ( )( ) ( )

( )
( )( )

( )( )

( ) ( )[ ]
( )( )

( )( )


































−

−−
+−−
−+−

−









−

−−
+−−

−
+








−

+−
−

+









−








−

−−
+








−

+−

=Ψ

−

−

=

−∑

2

1

2

2

2

22

1

1

1
22

2

1
1

11
112

1
1

12
12

1
21

2

2
1

1
1
21

φ
φθθφ

αφφφ
φφφα

φ
φθθφ

αφφα
αα

φ
θφθ

α
α

φ
φ

φθθφ
φ

θφθ

m

m

k

k

m

mm

kmm

 18 

( ) ( ) ( )( )
















−

−−








−+

−
+−

= ∑
−

=

−
2

1

1

1
2

2

1
12

1
21

φ
φθθφφ

φ
θφθη

m

k

kkmm  19 

( ) ( )( )








−

−−








−+= ∑ ∑

= =

−−
2

1 2

21

1
11
φ

φθθφφφξ
m

k

m

k

kmk kk  20 

For the quadratic function given by (E-1), the value of the discriminant ∆  and the roots 1β  and 2β  21 
can be defined as follows: 22 

( ) ( )( )ηφφξηφφφ −Ψ−Ψ+ΨΨ=∆ mm2mmm 182+2-)-(1-2  (E-2) 

( )
Ψ

∆+ΨΨ
= m

mmm

1 2
2+2-)-(1-2

φ
ξηφφφβ  (E-3) 

( )
Ψ−

∆+ΨΨ−
= m

mmm

2 2
2+2-)-(1-2

φ
ξηφφφβ  (E-4) 

By following the same procedure as discussed in Appendix C, the superiority conditions of each 23 
approach can be obtained by following the selection procedure: 24 
1. The procedure begins by calculating ∆ defined in (E-2), If 0<∆ then the non-aggregation approach 25 

is always superior, otherwise the values of 1β and 2β defined in (E-3) and (E-4) are calculated. 26 
2. If ( )1,02 ∈β , the value of β1 is calculated  and according to the values of β1 and β2 the following 27 

results are obtained: 28 
 If 12 βββ << , then the aggregation approach works better.  29 
 If 21 βββ == then both approaches are identical. 30 
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 If 1ββ > or 2ββ < then disaggregate strategy works better.  Otherwise, go to 3. 1 
3. If ( )1,02 ∉β , we calculate the value of 1β : 2 
 If 1ββ < , then the aggregation approach works better. 3 
 If 1ββ = , then both approaches are identical. 4 
 If 1ββ > , then non-aggregation approach works better. 5 

APPENDIX F: PROOF OF THEOREM 2 6 

In this case we have 11 <<− θ  and 01 ≤<− φ . It can be shown that for these parameter values ∆ 7 
defined at (E-2) is always positive and 2β  is either smaller than zero or greater than one 8 
( 02 <β or 12 >β ). Therefore, we follow the same procedure as Appendix C and finally we get: 9 
 If 1ββ < , the ratio of AABA MSEMSE  is greater than one and consequently the aggregation 10 

approach outperforms the non-aggregation one. 11 
 If 1ββ = , the ratio of AABA MSEMSE  is equal to one and both approaches perform equally. 12 
 If 1ββ > , the ratio of AABA MSEMSE  is smaller than one and the non-aggregation approach 13 

outperforms the aggregation one. 14 
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