570 research outputs found

    A high-throughput LC-MS/MS assay for piperaquine from dried blood spots: improving malaria treatment in resource-limited settings

    Get PDF
    Background: Malaria is a parasitic disease that affects many of the poorest economies, resulting in approximately 241 million clinical episodes and 627,000 deaths annually. Piperaquine, when administered with dihydroartemisinin, is an effective drug against the disease. Drug concentration measurements taken on day 7 after treatment initiation have been shown to be a good predictor of therapeutic success with piperaquine. A simple capillary blood collection technique, where blood is dried onto filter paper, is especially suitable for drug studies in remote areas or resource-limited settings or when taking samples from children, toddlers, and infants. Methods: Three 3.2 mm discs were punched out from a dried blood spot (DBS) and then extracted in a 96-well plate using solid phase extraction on a fully automated liquid handling system. The analysis was performed using LC-MS/MS with a calibration range of 3 – 1000 ng/mL. Results: The recovery rate was approximately 54–72 %, and the relative standard deviation was below 9 % for low, middle and high quality control levels. The LC-MS/MS quantification limit of 3 ng/mL is sensitive enough to detect piperaquine for up to 4–8 weeks after drug administration, which is crucial when evaluating recrudescence and drug resistance development. While different hematocrit levels can affect DBS drug measurements, the effect was minimal for piperaquine. Conclusion: A sensitive LC-MS/MS method, in combination with fully automated extraction in a 96-well plate format, was developed and validated for the quantification of piperaquine in DBS. The assay was implemented in a bioanalytical laboratory for processing large-scale clinical trial samples

    Use of population pharmacokinetic‐pharmacodynamic modelling to inform antimalarial dose optimization in infants

    Get PDF
    Infants bear a significant malaria burden but are usually excluded from participating in early dose optimization studies that inform dosing regimens of antimalarial therapy. Unlike older children, infants' exclusion from early‐phase trials has resulted in limited evidence to guide accurate dosing of antimalarial treatment for uncomplicated malaria or malaria‐preventive treatment in this vulnerable population. Subsequently, doses used in infants are often extrapolated from older children or adults, with the potential for under‐ or overdosing. Population pharmacokinetic‐pharmacodynamic (PK‐PD) modelling, a quantitative methodology that applies mathematical and statistical techniques, can aid the design of clinical studies in infants that collect sparse pharmacokinetic data as well as support the analysis of such data to derive optimized antimalarial dosing in this complex and at‐risk yet understudied subpopulation. In this review, we reflect on what PK‐PD modelling can do in programmatic settings of most malaria‐endemic areas and how it can be used to inform antimalarial dose optimization for preventive and curative treatment of uncomplicated malaria in infants. We outline key developmental physiological changes that affect drug exposure in early life, the challenges of conducting dose optimization studies in infants, and examples of how PK‐PD modelling has previously informed antimalarial dose optimization in this subgroup. Additionally, we discuss the limitations and gaps of PK‐PD modelling when used for dose optimization in infants. To utilize modelling well, there is a need to generate useful, sparse, PK and PD data in this subpopulation to inform antimalarial optimal dosing in infancy

    Från jord till bord - En studie om samskapande av värde genom spårbarhet

    Get PDF

    Quantification of the antimalarial drug pyronaridine in whole blood using LC–MS/MS — increased sensitivity resulting from reduced non-specific binding

    Get PDF
    Malaria is one of the most important parasitic diseases of man. The development of drug resistance in malaria parasites is an inevitable consequence of their widespread and often unregulated use. There is an urgent need for new and effective drugs. Pyronaridine is a known antimalarial drug that has received renewed interest as a partner drug in artemisinin-based combination therapy. To study its pharmacokinetic properties, particularly in field settings, it is necessary to develop and validate a robust, highly sensitive and accurate bioanalytical method for drug measurements in biological samples. We have developed a sensitive quantification method that covers a wide range of clinically relevant concentrations (1.5 ng/mL to 882 ng/mL) using a relatively low volume sample of 100 μL of whole blood. Total run time is 5 min and precision is within ±15% at all concentration levels. Pyronaridine was extracted on a weak cation exchange solid-phase column (SPE) and separated on a HALO RP amide fused-core column using a gradient mobile phase of acetonitrile–ammonium formate and acetonitrile-methanol. Detection was performed using electrospray ionization and tandem mass spectrometry (positive ion mode with selected reaction monitoring). The developed method is suitable for implementation in high-throughput routine drug analysis, and was used to quantify pyronaridine accurately for up to 42 days after a single oral dose in a drug-drug interaction study in healthy volunteers

    Optimal designs for population pharmacokinetic studies of oral artesunate in patients with uncomplicated falciparum malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Currently, population pharmacokinetic (PK) studies of anti-malarial drugs are designed primarily by the logistical and ethical constraints of taking blood samples from patients, and the statistical models that are fitted to the data are not formally considered. This could lead to imprecise estimates of the target PK parameters, and/or designs insufficient to estimate all of the parameters. Optimal design methodology has been developed to determine blood sampling schedules that will yield precise parameter estimates within the practical constraints of sampling the study populations. In this work optimal design methods were used to determine sampling designs for typical future population PK studies of dihydroartemisinin, the principal biologically active metabolite of oral artesunate.</p> <p>Methods</p> <p>Optimal designs were derived using freely available software and were based on appropriate structural PK models from an analysis of data or the literature and key sampling constraints identified in a questionnaire sent to active malaria researchers (3-4 samples per patient, at least 15 minutes between samples). The derived optimal designs were then evaluated via simulation-estimation.</p> <p>Results</p> <p>The derived optimal sampling windows were 17 to 29 minutes, 30 to 57 minutes, 2.5 to 3.7 hours and 5.8 to 6.6 hours for non-pregnant adults; 16 to 29 minutes, 31 minutes to 1 hour, 2.0 to 3.4 hours and 5.5 to 6.6 hours for designs with non-pregnant adults and children and 35 to 59 minutes, 1.2 to 3.4 hours, 3.4 to 4.9 hours and 6.0 to 8.0 hours for pregnant women. The optimal designs resulted in acceptable precision of the PK parameters.</p> <p>Conclusions</p> <p>The proposed sampling designs in this paper are robust and efficient and should be considered in future PK studies of oral artesunate where only three or four blood samples can be collected.</p

    Plasmodium falciparum drug resistance phenotype as assessed by patient antimalarial drug levels and Its association With pfmdr1 polymorphisms

    Get PDF
    Background. Multidrug-resistant Plasmodium falciparum is a major threat to global malaria control. Parasites develop resistance by gradually acquiring genetic polymorphisms that decrease drug susceptibility. The aim of this study was to investigate the extent to which parasites with different genetic characteristics are able to withstand individual drug blood concentrations. Methods. We analyzed 2 clinical trials that assessed the efficacy and effectiveness of artemether-lumefantrine. As a proof of concept, we used measured day 7 lumefantrine concentrations to estimate the concentrations at which reinfections multiplied. P. falciparum multidrug resistance gene 1 (pfmdr1) genotypes of these parasites were then correlated to drug susceptibility. Results. Reinfecting parasites with the pfmdr1 N86/184F/D1246 haplotype were able to withstand lumefantrine blood concentrations 15-fold higher than those with the 86Y/Y184/1246Y haplotype. Conclusions. By estimating drug concentrations, we were able to quantify the contribution of pfmdr1 single-nucleotide polymorphisms to reduced lumefantrine susceptibility. The method can be applied to all long-half-life antimalarial drugs, enables early detection of P. falciparum with reduced drug susceptibility in vivo, and represents a novel way for unveiling molecular markers of antimalarial drug resistance.Swedish Development Cooperation Agency-Department for Research Cooperation (SIDA-SAREC) [SWE 2004-3850, Bil-Tz 16/9875007059, SWE-2009-165]; World Health Organization MIM-TDR [[A60100] MAL IRM 06 03]; Goljes Foundation; Swedish medical research council [K2010-56X-21457-01-3]; Wellcome Trust of Great Britai

    The application of physiologically based pharmacokinetic modelling to assess the impact of antiretroviral-mediated drug-drug interactions on piperaquine antimalarial therapy during pregnancy

    Get PDF
    Antimalarial therapy during pregnancy poses important safety concerns due to potential teratogenicity and maternal physiological and biochemical changes during gestation. Piperaquine (PQ) has gained interest for use in pregnancy in response to increasing resistance towards sulfadoxine-pyrimethamine in sub-Saharan Africa. Coinfection with HIV is common in many developing countries, however, little is known about the impact of antiretroviral (ARV) mediated drug-drug interaction (DDI) on piperaquine pharmacokinetics during pregnancy. This study applied mechanistic pharmacokinetic modelling to predict pharmacokinetics in non-pregnant and pregnant patients, which was validated in distinct customised population groups from Thailand, Sudan and Papua New Guinea. In each population group, no significant differences in day 7 concentrations were observed during different gestational weeks (GW) (weeks 10-40), supporting the notion that piperaquine is safe throughout pregnancy with consistent pharmacokinetics, although possible teratogenicity may limit this. Antiretroviral-mediated DDIs (efavirenz and ritonavir) had moderate effects on piperaquine during different gestational weeks with a predicted AUCratioin the range 0.56-0.8 and 1.64-1.79 for efavirenz and ritonavir, respectively, over GW 10-40, with a reduction in circulating human serum albumin significantly reducing the number of subjects attaining the day 7 (post-dose) therapeutic efficacy concentrations under both efavirenz and ritonavir DDIs. This present model successfully mechanistically predicted the pharmacokinetics of piperaquine in pregnancy to be unchanged with respect to non-pregnant women, in the light of factors such as malaria/HIV co-infection. However, antiretroviral-mediated DDIs could significantly alter piperaquine pharmacokinetics. Further model refinement will include collation of relevant physiological and biochemical alterations common to HIV/malaria patients

    Population pharmacokinetic and pharmacodynamic properties of intramuscular quinine in Tanzanian children with severe Falciparum malaria.

    No full text
    Although artesunate is clearly superior, parenteral quinine is still used widely for the treatment of severe malaria. A loading-dose regimen has been recommended for 30 years but is still often not used. A population pharmacokinetic study was conducted with 75 Tanzanian children aged 4 months to 8 years with severe malaria who received quinine intramuscularly; 69 patients received a loading dose of 20 mg quinine dihydrochloride (salt)/kg of body weight. Twenty-one patients had plasma quinine concentrations detectable at baseline. A zero-order absorption model with one-compartment disposition pharmacokinetics described the data adequately. Body weight was the only significant covariate and was implemented as an allometric function on clearance and volume parameters. Population pharmacokinetic parameter estimates (and percent relative standard errors [%RSE]) of elimination clearance, central volume of distribution, and duration of zero-order absorption were 0.977 liters/h (6.50%), 16.7 liters (6.39%), and 1.42 h (21.5%), respectively, for a typical patient weighing 11 kg. Quinine exposure was reduced at lower body weights after standard weight-based dosing; there was 18% less exposure over 24 h in patients weighing 5 kg than in those weighing 25 kg. Maximum plasma concentrations after the loading dose were unaffected by body weight. There was no evidence of dose-related drug toxicity with the loading dosing regimen. Intramuscular quinine is rapidly and reliably absorbed in children with severe falciparum malaria. Based on these pharmacokinetic data, a loading dose of 20 mg salt/kg is recommended, provided that no loading dose was administered within 24 h and no routine dose was administered within 12 h of admission. (This study has been registered with Current Controlled Trials under registration number ISRCTN 50258054.)

    Artemisinin resistance in Plasmodium falciparum malaria.

    Get PDF
    BACKGROUND: Artemisinin-based combination therapies are the recommended first-line treatments of falciparum malaria in all countries with endemic disease. There are recent concerns that the efficacy of such therapies has declined on the Thai-Cambodian border, historically a site of emerging antimalarial-drug resistance. METHODS: In two open-label, randomized trials, we compared the efficacies of two treatments for uncomplicated falciparum malaria in Pailin, western Cambodia, and Wang Pha, northwestern Thailand: oral artesunate given at a dose of 2 mg per kilogram of body weight per day, for 7 days, and artesunate given at a dose of 4 mg per kilogram per day, for 3 days, followed by mefloquine at two doses totaling 25 mg per kilogram. We assessed in vitro and in vivo Plasmodium falciparum susceptibility, artesunate pharmacokinetics, and molecular markers of resistance. RESULTS: We studied 40 patients in each of the two locations. The overall median parasite clearance times were 84 hours (interquartile range, 60 to 96) in Pailin and 48 hours (interquartile range, 36 to 66) in Wang Pha (P<0.001). Recrudescence confirmed by means of polymerase-chain-reaction assay occurred in 6 of 20 patients (30%) receiving artesunate monotherapy and 1 of 20 (5%) receiving artesunate-mefloquine therapy in Pailin, as compared with 2 of 20 (10%) and 1 of 20 (5%), respectively, in Wang Pha (P=0.31). These markedly different parasitologic responses were not explained by differences in age, artesunate or dihydroartemisinin pharmacokinetics, results of isotopic in vitro sensitivity tests, or putative molecular correlates of P. falciparum drug resistance (mutations or amplifications of the gene encoding a multidrug resistance protein [PfMDR1] or mutations in the gene encoding sarco-endoplasmic reticulum calcium ATPase6 [PfSERCA]). Adverse events were mild and did not differ significantly between the two treatment groups. CONCLUSIONS: P. falciparum has reduced in vivo susceptibility to artesunate in western Cambodia as compared with northwestern Thailand. Resistance is characterized by slow parasite clearance in vivo without corresponding reductions on conventional in vitro susceptibility testing. Containment measures are urgently needed. (ClinicalTrials.gov number, NCT00493363, and Current Controlled Trials number, ISRCTN64835265.

    The uncertain role of substandard and falsified medicines in the emergence and spread of antimicrobial resistance

    Get PDF
    Approximately 10% of antimicrobials used by humans in low- and middle-income countries are estimated to be substandard or falsified. In addition to their negative impact on morbidity and mortality, they may also be important drivers of antimicrobial resistance. Despite such concerns, our understanding of this relationship remains rudimentary. Substandard and falsified medicines have the potential to either increase or decrease levels of resistance, and here we discuss a range of mechanisms that could drive these changes. Understanding these effects and their relative importance will require an improved understanding of how different drug exposures affect the emergence and spread of resistance and of how the percentage of active pharmaceutical ingredients in substandard and falsified medicines is temporally and spatially distributed
    corecore