33 research outputs found

    A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein

    Get PDF
    Prion diseases are rare neurodegenerative conditions associated with the conformational conversion of the cellular prion protein (PrPC) into PrPSc, a self-replicating isoform (prion) that accumulates in the central nervous system of affected individuals. The structure of PrPSc is poorly defined, and likely to be heterogeneous, as suggested by the existence of different prion strains. The latter represents a relevant problem for therapy in prion diseases, as some potent anti-prion compounds have shown strain-specificity. Designing therapeutics that target PrPC may provide an opportunity to overcome these problems. PrPC ligands may theoretically inhibit the replication of multiple prion strains, by acting on the common substrate of any prion replication reaction. Here, we characterized the properties of a cationic tetrapyrrole [Fe(III)-TMPyP], which was previously shown to bind PrPC, and inhibit the replication of a mouse prion strain. We report that the compound is active against multiple prion strains in vitro and in cells. Interestingly, we also find that Fe(III)-TMPyP inhibits several PrPC-related toxic activities, including the channel-forming ability of a PrP mutant, and the PrPC-dependent synaptotoxicity of amyloid-beta (A beta) oligomers, which are associated with Alzheimer's Disease. These results demonstrate that molecules binding to PrPC may produce a dual effect of blocking prion replication and inhibiting PrPC-mediated toxicity

    Synthetic miniprion PrP106.

    Get PDF
    Elucidation of structure and biological properties of the prion protein scrapie (PrP(Sc)) is fundamental to an understanding of the mechanism of conformational transition of cellular (PrP(C)) into disease-specific isoforms and the pathogenesis of prion diseases. Unfortunately, the insolubility and heterogeneity of PrP(Sc) have limited these studies. The observation that a construct of 106 amino acids (termed PrP106 or miniprion), derived from mouse PrP and containing two deletions (Delta 23-88, Delta 141-176), becomes protease-resistant when expressed in scrapie-infected neuroblastoma cells and sustains prion replication when expressed in PrP(0/0) mice prompted us to generate a corresponding synthetic peptide (sPrP106) to be used for biochemical and cell culture studies. sPrP106 was obtained successfully with a straightforward procedure, which combines classical stepwise solid phase synthesis with a purification strategy based on transient labeling with a lipophilic chromatographic probe. sPrP106 readily adopted a beta-sheet structure, aggregated into branched filamentous structures without ultrastructural and tinctorial properties of amyloid, exhibited a proteinase K-resistant domain spanning residues 134-217, was highly toxic to primary neuronal cultures, and induced a remarkable increase in membrane microviscosity. These features are central properties of PrP(Sc) and make sPrP106 an excellent tool for investigating the molecular basis of the conformational conversion of PrP(C) into PrP(Sc) and prion disease pathogenesis

    Characterization of Detergent-Insoluble Proteins in ALS Indicates a Causal Link between Nitrative Stress and Aggregation in Pathogenesis

    Get PDF
    BACKGROUND:Amyotrophic lateral sclerosis (ALS) is a progressive and fatal motor neuron disease, and protein aggregation has been proposed as a possible pathogenetic mechanism. However, the aggregate protein constituents are poorly characterized so knowledge on the role of aggregation in pathogenesis is limited. METHODOLOGY/PRINCIPAL FINDINGS:We carried out a proteomic analysis of the protein composition of the insoluble fraction, as a model of protein aggregates, from familial ALS (fALS) mouse model at different disease stages. We identified several proteins enriched in the detergent-insoluble fraction already at a preclinical stage, including intermediate filaments, chaperones and mitochondrial proteins. Aconitase, HSC70 and cyclophilin A were also significantly enriched in the insoluble fraction of spinal cords of ALS patients. Moreover, we found that the majority of proteins in mice and HSP90 in patients were tyrosine-nitrated. We therefore investigated the role of nitrative stress in aggregate formation in fALS-like murine motor neuron-neuroblastoma (NSC-34) cell lines. By inhibiting nitric oxide synthesis the amount of insoluble proteins, particularly aconitase, HSC70, cyclophilin A and SOD1 can be substantially reduced. CONCLUSION/SIGNIFICANCE:Analysis of the insoluble fractions from cellular/mouse models and human tissues revealed novel aggregation-prone proteins and suggests that nitrative stress contribute to protein aggregate formation in ALS

    The Toxicity of a Mutant Prion Protein Is Cell-Autonomous, and Can Be Suppressed by Wild-Type Prion Protein on Adjacent Cells

    Get PDF
    Insight into the normal function of PrPC, and how it can be subverted to produce neurotoxic effects, is provided by PrP molecules carrying deletions encompassing the conserved central region. The most neurotoxic of these mutants, Δ105–125 (called ΔCR), produces a spontaneous neurodegenerative illness when expressed in transgenic mice, and this phenotype can be dose-dependently suppressed by co-expression of wild-type PrP. Whether the toxic activity of ΔCR PrP and the protective activity or wild-type PrP are cell-autonomous, or can be exerted on neighboring cells, is unknown. To investigate this question, we have utilized co-cultures of differentiated neural stem cells derived from mice expressing ΔCR or wild-type PrP. Cells from the two kinds of mice, which are marked by the presence or absence of GFP, are differentiated together to yield neurons, astrocytes, and oligodendrocytes. As a surrogate read-out of ΔCR PrP toxicity, we assayed sensitivity of the cells to the cationic antibiotic, Zeocin. In a previous study, we reported that cells expressing ΔCR PrP are hypersensitive to the toxic effects of several cationic antibiotics, an effect that is suppressed by co-expression of wild type PrP, similar to the rescue of the neurodegenerative phenotype observed in transgenic mice. Using this system, we find that while ΔCR-dependent toxicity is cell-autonomous, the rescuing activity of wild-type PrP can be exerted in trans from nearby cells. These results provide important insights into how ΔCR PrP subverts a normal physiological function of PrPC, and the cellular mechanisms underlying the rescuing process

    Transglutaminase 2 transamidation activity during first-phase insulin secretion: natural substrates in INS-1E.

    No full text
    Transglutaminase 2 (TG2) is a multifunctional protein with Ca(2+)-dependent transamidating and G protein activity. Previously, we reported that tgm2 -/- mice have an impaired insulin secretion and that naturally occurring TG2 mutations associated with familial, early-onset type 2 diabetes, show a defective transamidating activity. Aim of this study was to get a better insight into the role of TG2 in insulin secretion by identifying substrates of TG2 transamidating activity in the pancreatic beta cell line INS-1E. To this end, we labeled INS-1E that are capable of secreting insulin upon glucose stimulation in the physiologic range, with an artificial acyl acceptor (biotinamido-pentylamine) or donor (biotinylated peptide), in basal condition and after stimulus with glucose for 2, 5, and 8 min. Biotinylated proteins were analyzed by two-dimensional electrophoresis and mass spectrometry. In addition, subcellular localization of TG2 in human endocrine pancreas was studied by electron microscopy. Among several TG2's transamidating substrates in INS-1E, mass spectrometry identified cytoplasmic actin (a result confirmed in human pancreatic islet), tropomyosin, and molecules that participate in insulin granule structure (e.g., GAPDH), glucose metabolism, or [Ca(2+)] sensing (e.g., calreticulin). Physical interaction between TG2 and cytoplasmic actin during glucose-stimulated first-phase insulin secretion was confirmed by co-immunoprecipitation. Electron microscopy revealed that TG2 is localized close to insulin and glucagon granules in human pancreatic islet. We propose that TG2's role in insulin secretion may involve cytoplasmic actin remodeling and may have a regulative action on other proteins during granule movement. A similar role of TG2 in glucagon secretion is also suggested

    Detection of GFP-positive NSCs.

    No full text
    <p>(<b>A</b>) Phase contrast image of undifferentiated neurospheres of mixed GFP-positive and GFP-negative origin. (<b>B</b>) Green fluorescent signal from the same neurospheres shown in (A). Note the presence of both GFP-positive (red arrows) and GFP-negative(yellow arrows) NSCs. (<b>C</b>) Phase image of the mixed culture after differentiation. (<b>D</b>) Green fluorescent signal from the NSCs shown in (C) demonstrates that differentiated GFP-positive and GFP-negative NSCs have mixed during migration. Scale bar = 100 µm.</p

    ΔCR PrP-dependent hypersensitivity to drugs is cell-autonomous.

    No full text
    <p>NSCs from E13.5 mouse embryos were cultured as neurospheres and differentiated for 10 days in presence of retinoic acid. Differentiated NSCs were treated for 24 hrs with Zeocin (500 µg/ml), then stained by TUNEL (red) to reveal fragmented DNA (indicated by yellow arrows) and with DAPI (blue) to stain nuclei. GFP-negative or GFP-positive NSCs from of KO or ΔCR mice were mixed as follow: (<b>A</b>) GFP-negative and GFP-positive KO cells; (<b>B</b>) GFP-negative and GFP-positive ΔCR cells; (<b>C</b>) GFP-negative KO cells mixed with GFP-positive ΔCR cells; (<b>D</b>) GFP-positive KO cells mixed with GFP-negative ΔCR cells. (<b>E</b>) The bar graph shows the number of TUNEL-positive cells, expressed as a percentage of the number of DAPI-stained cells, as determined in 5–7 fields for each sample group. Bars show means ± SEM (n = 5 independent experiments). The number of TUNEL-positive ΔCR cells, either GFP-positive or GFP-negative, was significantly higher than the number of TUNEL-positive KO cells (*** p<0.001) when ΔCR and WT cells were cultured together (groups C and D).</p
    corecore